| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104 |
- // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #pragma once
- #include "ultra_infer/utils/utils.h"
- #include "ultra_infer/vision/common/processors/base.h"
- #include "ultra_infer/vision/common/processors/mat.h"
- #include "ultra_infer/vision/common/processors/mat_batch.h"
- namespace ultra_infer {
- namespace vision {
- /*! @brief ProcessorManager for Preprocess
- */
- class ULTRAINFER_DECL ProcessorManager {
- public:
- ~ProcessorManager();
- /** \brief Use CUDA to boost the performance of processors
- *
- * \param[in] enable_cv_cuda true: use CV-CUDA, false: use CUDA only
- * \param[in] gpu_id GPU device id
- * \return true if the preprocess succeeded, otherwise false
- */
- void UseCuda(bool enable_cv_cuda = false, int gpu_id = -1);
- bool CudaUsed();
- #ifdef WITH_GPU
- cudaStream_t Stream() const { return stream_; }
- #endif
- void SetStream(FDMat *mat) {
- #ifdef WITH_GPU
- mat->SetStream(stream_);
- #endif
- }
- void SetStream(FDMatBatch *mat_batch) {
- #ifdef WITH_GPU
- mat_batch->SetStream(stream_);
- #endif
- }
- void SyncStream() {
- #ifdef WITH_GPU
- FDASSERT(cudaStreamSynchronize(stream_) == cudaSuccess,
- "[ERROR] Error occurs while sync cuda stream.");
- #endif
- }
- int DeviceId() { return device_id_; }
- /** \brief Process the input images and prepare input tensors for runtime
- *
- * \param[in] images The input image data list, all the elements are returned
- * by cv::imread() \param[in] outputs The output tensors which will feed in
- * runtime \return true if the preprocess succeeded, otherwise false
- */
- bool Run(std::vector<FDMat> *images, std::vector<FDTensor> *outputs);
- /** \brief Apply() is the body of Run() function, it needs to be implemented
- * by a derived class
- *
- * \param[in] image_batch The input image batch
- * \param[in] outputs The output tensors which will feed in runtime
- * \return true if the preprocess succeeded, otherwise false
- */
- virtual bool Apply(FDMatBatch *image_batch,
- std::vector<FDTensor> *outputs) = 0;
- void PreApply(FDMatBatch *image_batch);
- void PostApply();
- protected:
- ProcLib proc_lib_ = ProcLib::DEFAULT;
- private:
- #ifdef WITH_GPU
- cudaStream_t stream_ = nullptr;
- #endif
- int device_id_ = -1;
- std::vector<FDTensor> input_caches_;
- std::vector<FDTensor> output_caches_;
- FDTensor batch_input_cache_;
- FDTensor batch_output_cache_;
- };
- } // namespace vision
- } // namespace ultra_infer
|