| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338 |
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include "ultra_infer/vision/detection/contrib/nanodet_plus.h"
- #include "ultra_infer/utils/perf.h"
- #include "ultra_infer/vision/utils/utils.h"
- namespace ultra_infer {
- namespace vision {
- namespace detection {
- struct NanoDetPlusCenterPoint {
- int grid0;
- int grid1;
- int stride;
- };
- void GenerateNanoDetPlusCenterPoints(
- const std::vector<int> &size, const std::vector<int> &downsample_strides,
- std::vector<NanoDetPlusCenterPoint> *center_points) {
- // size: tuple of input (width, height), e.g (320, 320)
- // downsample_strides: downsample strides in NanoDet and
- // NanoDet-Plus, e.g (8, 16, 32, 64)
- const int width = size[0];
- const int height = size[1];
- for (const auto &ds : downsample_strides) {
- int num_grid_w = width / ds;
- int num_grid_h = height / ds;
- for (int g1 = 0; g1 < num_grid_h; ++g1) {
- for (int g0 = 0; g0 < num_grid_w; ++g0) {
- (*center_points).emplace_back(NanoDetPlusCenterPoint{g0, g1, ds});
- }
- }
- }
- }
- void WrapAndResize(Mat *mat, std::vector<int> size, std::vector<float> color,
- bool keep_ratio = false) {
- // Reference: nanodet/data/transform/warp.py#L139
- // size: tuple of input (width, height)
- // The default value of `keep_ratio` is `false` in
- // `config/nanodet-plus-m-1.5x_320.yml` for both
- // train and val processes. So, we just let this
- // option default `false` according to the official
- // implementation in NanoDet and NanoDet-Plus.
- // Note, this function will apply a normal resize
- // operation to input Mat if the keep_ratio option
- // is false and the behavior will be the same as
- // yolov5's letterbox if keep_ratio is true.
- // with keep_ratio = false (default)
- if (!keep_ratio) {
- int resize_h = size[1];
- int resize_w = size[0];
- if (resize_h != mat->Height() || resize_w != mat->Width()) {
- Resize::Run(mat, resize_w, resize_h);
- }
- return;
- }
- // with keep_ratio = true, same as yolov5's letterbox
- float r = std::min(size[1] * 1.0f / static_cast<float>(mat->Height()),
- size[0] * 1.0f / static_cast<float>(mat->Width()));
- int resize_h = int(round(static_cast<float>(mat->Height()) * r));
- int resize_w = int(round(static_cast<float>(mat->Width()) * r));
- if (resize_h != mat->Height() || resize_w != mat->Width()) {
- Resize::Run(mat, resize_w, resize_h);
- }
- int pad_w = size[0] - resize_w;
- int pad_h = size[1] - resize_h;
- if (pad_h > 0 || pad_w > 0) {
- float half_h = pad_h * 1.0 / 2;
- int top = int(round(half_h - 0.1));
- int bottom = int(round(half_h + 0.1));
- float half_w = pad_w * 1.0 / 2;
- int left = int(round(half_w - 0.1));
- int right = int(round(half_w + 0.1));
- Pad::Run(mat, top, bottom, left, right, color);
- }
- }
- void GFLRegression(const float *logits, size_t reg_num, float *offset) {
- // Hint: reg_num = reg_max + 1
- FDASSERT(((nullptr != logits) && (reg_num != 0)),
- "NanoDetPlus: logits is nullptr or reg_num is 0 in GFLRegression.");
- // softmax
- float total_exp = 0.f;
- std::vector<float> softmax_probs(reg_num);
- for (size_t i = 0; i < reg_num; ++i) {
- softmax_probs[i] = std::exp(logits[i]);
- total_exp += softmax_probs[i];
- }
- for (size_t i = 0; i < reg_num; ++i) {
- softmax_probs[i] = softmax_probs[i] / total_exp;
- }
- // gfl regression -> offset
- for (size_t i = 0; i < reg_num; ++i) {
- (*offset) += static_cast<float>(i) * softmax_probs[i];
- }
- }
- NanoDetPlus::NanoDetPlus(const std::string &model_file,
- const std::string ¶ms_file,
- const RuntimeOption &custom_option,
- const ModelFormat &model_format) {
- if (model_format == ModelFormat::ONNX) {
- valid_cpu_backends = {Backend::ORT};
- valid_gpu_backends = {Backend::ORT, Backend::TRT};
- } else {
- valid_cpu_backends = {Backend::PDINFER, Backend::ORT};
- valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
- }
- runtime_option = custom_option;
- runtime_option.model_format = model_format;
- runtime_option.model_file = model_file;
- runtime_option.params_file = params_file;
- initialized = Initialize();
- }
- bool NanoDetPlus::Initialize() {
- // parameters for preprocess
- size = {320, 320};
- padding_value = {0.0f, 0.0f, 0.0f};
- keep_ratio = false;
- downsample_strides = {8, 16, 32, 64};
- max_wh = 4096.0f;
- reg_max = 7;
- if (!InitRuntime()) {
- FDERROR << "Failed to initialize ultra_infer backend." << std::endl;
- return false;
- }
- // Check if the input shape is dynamic after Runtime already initialized.
- is_dynamic_input_ = false;
- auto shape = InputInfoOfRuntime(0).shape;
- for (int i = 0; i < shape.size(); ++i) {
- // if height or width is dynamic
- if (i >= 2 && shape[i] <= 0) {
- is_dynamic_input_ = true;
- break;
- }
- }
- return true;
- }
- bool NanoDetPlus::Preprocess(
- Mat *mat, FDTensor *output,
- std::map<std::string, std::array<float, 2>> *im_info) {
- // NanoDet-Plus preprocess steps
- // 1. WrapAndResize
- // 2. HWC->CHW
- // 3. Normalize or Convert (keep BGR order)
- WrapAndResize(mat, size, padding_value, keep_ratio);
- // Record output shape of preprocessed image
- (*im_info)["output_shape"] = {static_cast<float>(mat->Height()),
- static_cast<float>(mat->Width())};
- // Compute `result = mat * alpha + beta` directly by channel
- // Reference: /config/nanodet-plus-m-1.5x_320.yml#L89
- // from mean: [103.53, 116.28, 123.675], std: [57.375, 57.12, 58.395]
- // x' = (x - mean) / std to x'= x * alpha + beta.
- // e.g alpha[0] = 0.017429f = 1.0f / 57.375f
- // e.g beta[0] = -103.53f * 0.0174291f
- std::vector<float> alpha = {0.017429f, 0.017507f, 0.017125f};
- std::vector<float> beta = {-103.53f * 0.0174291f, -116.28f * 0.0175070f,
- -123.675f * 0.0171247f}; // BGR order
- Convert::Run(mat, alpha, beta);
- HWC2CHW::Run(mat);
- Cast::Run(mat, "float");
- mat->ShareWithTensor(output);
- output->shape.insert(output->shape.begin(), 1); // reshape to n, c, h, w
- return true;
- }
- bool NanoDetPlus::Postprocess(
- FDTensor &infer_result, DetectionResult *result,
- const std::map<std::string, std::array<float, 2>> &im_info,
- float conf_threshold, float nms_iou_threshold) {
- FDASSERT(infer_result.shape[0] == 1, "Only support batch =1 now.");
- result->Clear();
- result->Reserve(infer_result.shape[1]);
- if (infer_result.dtype != FDDataType::FP32) {
- FDERROR << "Only support post process with float32 data." << std::endl;
- return false;
- }
- // generate center points with dowmsample strides
- std::vector<NanoDetPlusCenterPoint> center_points;
- GenerateNanoDetPlusCenterPoints(size, downsample_strides, ¢er_points);
- // infer_result shape might look like (1,2125,112)
- const int num_cls_reg = infer_result.shape[2]; // e.g 112
- const int num_classes = num_cls_reg - (reg_max + 1) * 4; // e.g 80
- float *data = static_cast<float *>(infer_result.Data());
- for (size_t i = 0; i < infer_result.shape[1]; ++i) {
- float *scores = data + i * num_cls_reg;
- float *max_class_score = std::max_element(scores, scores + num_classes);
- float confidence = (*max_class_score);
- // filter boxes by conf_threshold
- if (confidence <= conf_threshold) {
- continue;
- }
- int32_t label_id = std::distance(scores, max_class_score);
- // fetch i-th center point
- float grid0 = static_cast<float>(center_points.at(i).grid0);
- float grid1 = static_cast<float>(center_points.at(i).grid1);
- float downsample_stride = static_cast<float>(center_points.at(i).stride);
- // apply gfl regression to get offsets (l,t,r,b)
- float *logits = data + i * num_cls_reg + num_classes; // 32|44...
- std::vector<float> offsets(4);
- for (size_t j = 0; j < 4; ++j) {
- GFLRegression(logits + j * (reg_max + 1), reg_max + 1, &offsets[j]);
- }
- // convert from offsets to [x1, y1, x2, y2]
- float l = offsets[0]; // left
- float t = offsets[1]; // top
- float r = offsets[2]; // right
- float b = offsets[3]; // bottom
- float x1 = (grid0 - l) * downsample_stride; // cx - l x1
- float y1 = (grid1 - t) * downsample_stride; // cy - t y1
- float x2 = (grid0 + r) * downsample_stride; // cx + r x2
- float y2 = (grid1 + b) * downsample_stride; // cy + b y2
- result->boxes.emplace_back(
- std::array<float, 4>{x1 + label_id * max_wh, y1 + label_id * max_wh,
- x2 + label_id * max_wh, y2 + label_id * max_wh});
- // label_id * max_wh for multi classes NMS
- result->label_ids.push_back(label_id);
- result->scores.push_back(confidence);
- }
- utils::NMS(result, nms_iou_threshold);
- // scale the boxes to the origin image shape
- auto iter_out = im_info.find("output_shape");
- auto iter_ipt = im_info.find("input_shape");
- FDASSERT(iter_out != im_info.end() && iter_ipt != im_info.end(),
- "Cannot find input_shape or output_shape from im_info.");
- float out_h = iter_out->second[0];
- float out_w = iter_out->second[1];
- float ipt_h = iter_ipt->second[0];
- float ipt_w = iter_ipt->second[1];
- // without keep_ratio
- if (!keep_ratio) {
- // x' = (x / out_w) * ipt_w = x / (out_w / ipt_w)
- // y' = (y / out_h) * ipt_h = y / (out_h / ipt_h)
- float r_w = out_w / ipt_w;
- float r_h = out_h / ipt_h;
- for (size_t i = 0; i < result->boxes.size(); ++i) {
- int32_t label_id = (result->label_ids)[i];
- // clip box
- result->boxes[i][0] = result->boxes[i][0] - max_wh * label_id;
- result->boxes[i][1] = result->boxes[i][1] - max_wh * label_id;
- result->boxes[i][2] = result->boxes[i][2] - max_wh * label_id;
- result->boxes[i][3] = result->boxes[i][3] - max_wh * label_id;
- result->boxes[i][0] = std::max(result->boxes[i][0] / r_w, 0.0f);
- result->boxes[i][1] = std::max(result->boxes[i][1] / r_h, 0.0f);
- result->boxes[i][2] = std::max(result->boxes[i][2] / r_w, 0.0f);
- result->boxes[i][3] = std::max(result->boxes[i][3] / r_h, 0.0f);
- result->boxes[i][0] = std::min(result->boxes[i][0], ipt_w - 1.0f);
- result->boxes[i][1] = std::min(result->boxes[i][1], ipt_h - 1.0f);
- result->boxes[i][2] = std::min(result->boxes[i][2], ipt_w - 1.0f);
- result->boxes[i][3] = std::min(result->boxes[i][3], ipt_h - 1.0f);
- }
- return true;
- }
- // with keep_ratio
- float r = std::min(out_h / ipt_h, out_w / ipt_w);
- float pad_h = (out_h - ipt_h * r) / 2;
- float pad_w = (out_w - ipt_w * r) / 2;
- for (size_t i = 0; i < result->boxes.size(); ++i) {
- int32_t label_id = (result->label_ids)[i];
- // clip box
- result->boxes[i][0] = result->boxes[i][0] - max_wh * label_id;
- result->boxes[i][1] = result->boxes[i][1] - max_wh * label_id;
- result->boxes[i][2] = result->boxes[i][2] - max_wh * label_id;
- result->boxes[i][3] = result->boxes[i][3] - max_wh * label_id;
- result->boxes[i][0] = std::max((result->boxes[i][0] - pad_w) / r, 0.0f);
- result->boxes[i][1] = std::max((result->boxes[i][1] - pad_h) / r, 0.0f);
- result->boxes[i][2] = std::max((result->boxes[i][2] - pad_w) / r, 0.0f);
- result->boxes[i][3] = std::max((result->boxes[i][3] - pad_h) / r, 0.0f);
- result->boxes[i][0] = std::min(result->boxes[i][0], ipt_w - 1.0f);
- result->boxes[i][1] = std::min(result->boxes[i][1], ipt_h - 1.0f);
- result->boxes[i][2] = std::min(result->boxes[i][2], ipt_w - 1.0f);
- result->boxes[i][3] = std::min(result->boxes[i][3], ipt_h - 1.0f);
- }
- return true;
- }
- bool NanoDetPlus::Predict(cv::Mat *im, DetectionResult *result,
- float conf_threshold, float nms_iou_threshold) {
- Mat mat(*im);
- std::vector<FDTensor> input_tensors(1);
- std::map<std::string, std::array<float, 2>> im_info;
- // Record the shape of image and the shape of preprocessed image
- im_info["input_shape"] = {static_cast<float>(mat.Height()),
- static_cast<float>(mat.Width())};
- im_info["output_shape"] = {static_cast<float>(mat.Height()),
- static_cast<float>(mat.Width())};
- if (!Preprocess(&mat, &input_tensors[0], &im_info)) {
- FDERROR << "Failed to preprocess input image." << std::endl;
- return false;
- }
- input_tensors[0].name = InputInfoOfRuntime(0).name;
- std::vector<FDTensor> output_tensors;
- if (!Infer(input_tensors, &output_tensors)) {
- FDERROR << "Failed to inference." << std::endl;
- return false;
- }
- if (!Postprocess(output_tensors[0], result, im_info, conf_threshold,
- nms_iou_threshold)) {
- FDERROR << "Failed to post process." << std::endl;
- return false;
- }
- return true;
- }
- } // namespace detection
- } // namespace vision
- } // namespace ultra_infer
|