| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212 |
- // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include "ultra_infer/vision/detection/contrib/rknpu2/postprocessor.h"
- #include "ultra_infer/vision/utils/utils.h"
- namespace ultra_infer {
- namespace vision {
- namespace detection {
- RKYOLOPostprocessor::RKYOLOPostprocessor() {}
- bool RKYOLOPostprocessor::Run(const std::vector<FDTensor> &tensors,
- std::vector<DetectionResult> *results) {
- results->resize(tensors[0].shape[0]);
- for (int num = 0; num < tensors[0].shape[0]; ++num) {
- int validCount = 0;
- std::vector<float> filterBoxes;
- std::vector<float> boxesScore;
- std::vector<int> classId;
- for (int i = 0; i < tensors.size(); i++) {
- auto tensor_shape = tensors[i].shape;
- auto skip_num = std::accumulate(tensor_shape.begin(), tensor_shape.end(),
- 1, std::multiplies<int>());
- int skip_address = num * skip_num;
- int stride = strides_[i];
- int grid_h = height_ / stride;
- int grid_w = width_ / stride;
- int *anchor = &(anchors_.data()[i * 2 * anchor_per_branch_]);
- if (tensors[i].dtype == FDDataType::FP32) {
- validCount = validCount +
- ProcessFP16((float *)tensors[i].Data() + skip_address,
- anchor, grid_h, grid_w, stride, filterBoxes,
- boxesScore, classId, conf_threshold_);
- } else {
- FDERROR << "RKYOLO Only Support FP32 Model."
- << "But the result's type is " << Str(tensors[i].dtype)
- << std::endl;
- }
- }
- // no object detect
- if (validCount <= 0) {
- FDINFO << "The number of object detect is 0." << std::endl;
- return true;
- }
- std::vector<int> indexArray;
- for (int i = 0; i < validCount; ++i) {
- indexArray.push_back(i);
- }
- QuickSortIndiceInverse(boxesScore, 0, validCount - 1, indexArray);
- if (anchor_per_branch_ == 3) {
- NMS(validCount, filterBoxes, classId, indexArray, nms_threshold_, false);
- } else if (anchor_per_branch_ == 1) {
- NMS(validCount, filterBoxes, classId, indexArray, nms_threshold_, true);
- } else {
- FDERROR << "anchor_per_branch_ only support 3 or 1." << std::endl;
- return false;
- }
- int last_count = 0;
- (*results)[num].Clear();
- (*results)[num].Reserve(validCount);
- /* box valid detect target */
- for (int i = 0; i < validCount; ++i) {
- if (indexArray[i] == -1 || boxesScore[i] < conf_threshold_ ||
- last_count >= obj_num_bbox_max_size) {
- continue;
- }
- int n = indexArray[i];
- float x1 = filterBoxes[n * 4 + 0];
- float y1 = filterBoxes[n * 4 + 1];
- float x2 = x1 + filterBoxes[n * 4 + 2];
- float y2 = y1 + filterBoxes[n * 4 + 3];
- int id = classId[n];
- (*results)[num].boxes.emplace_back(std::array<float, 4>{
- (float)((Clamp(x1, 0, width_) - pad_hw_values_[num][1] / 2) /
- scale_[num]),
- (float)((Clamp(y1, 0, height_) - pad_hw_values_[num][0] / 2) /
- scale_[num]),
- (float)((Clamp(x2, 0, width_) - pad_hw_values_[num][1] / 2) /
- scale_[num]),
- (float)((Clamp(y2, 0, height_) - pad_hw_values_[num][0] / 2) /
- scale_[0])});
- (*results)[num].label_ids.push_back(id);
- (*results)[num].scores.push_back(boxesScore[i]);
- last_count++;
- }
- }
- return true;
- }
- int RKYOLOPostprocessor::ProcessFP16(float *input, int *anchor, int grid_h,
- int grid_w, int stride,
- std::vector<float> &boxes,
- std::vector<float> &boxScores,
- std::vector<int> &classId,
- float threshold) {
- int validCount = 0;
- int grid_len = grid_h * grid_w;
- // float thres_sigmoid = threshold;
- for (int a = 0; a < anchor_per_branch_; a++) {
- for (int i = 0; i < grid_h; i++) {
- for (int j = 0; j < grid_w; j++) {
- float box_confidence =
- input[(prob_box_size_ * a + 4) * grid_len + i * grid_w + j];
- if (box_confidence >= threshold) {
- int offset = (prob_box_size_ * a) * grid_len + i * grid_w + j;
- float *in_ptr = input + offset;
- float maxClassProbs = in_ptr[5 * grid_len];
- int maxClassId = 0;
- for (int k = 1; k < obj_class_num_; ++k) {
- float prob = in_ptr[(5 + k) * grid_len];
- if (prob > maxClassProbs) {
- maxClassId = k;
- maxClassProbs = prob;
- }
- }
- float box_conf_f32 = (box_confidence);
- float class_prob_f32 = (maxClassProbs);
- float limit_score = 0;
- if (anchor_per_branch_ == 1) {
- limit_score = class_prob_f32;
- } else {
- limit_score = box_conf_f32 * class_prob_f32;
- }
- if (limit_score > conf_threshold_) {
- float box_x, box_y, box_w, box_h;
- if (anchor_per_branch_ == 1) {
- box_x = *in_ptr;
- box_y = (in_ptr[grid_len]);
- box_w = exp(in_ptr[2 * grid_len]) * stride;
- box_h = exp(in_ptr[3 * grid_len]) * stride;
- } else {
- box_x = *in_ptr * 2.0 - 0.5;
- box_y = (in_ptr[grid_len]) * 2.0 - 0.5;
- box_w = (in_ptr[2 * grid_len]) * 2.0;
- box_h = (in_ptr[3 * grid_len]) * 2.0;
- box_w *= box_w;
- box_h *= box_h;
- }
- box_x = (box_x + j) * (float)stride;
- box_y = (box_y + i) * (float)stride;
- box_w *= (float)anchor[a * 2];
- box_h *= (float)anchor[a * 2 + 1];
- box_x -= (box_w / 2.0);
- box_y -= (box_h / 2.0);
- boxes.push_back(box_x);
- boxes.push_back(box_y);
- boxes.push_back(box_w);
- boxes.push_back(box_h);
- boxScores.push_back(box_conf_f32 * class_prob_f32);
- classId.push_back(maxClassId);
- validCount++;
- }
- }
- }
- }
- }
- return validCount;
- }
- int RKYOLOPostprocessor::QuickSortIndiceInverse(std::vector<float> &input,
- int left, int right,
- std::vector<int> &indices) {
- float key;
- int key_index;
- int low = left;
- int high = right;
- if (left < right) {
- key_index = indices[left];
- key = input[left];
- while (low < high) {
- while (low < high && input[high] <= key) {
- high--;
- }
- input[low] = input[high];
- indices[low] = indices[high];
- while (low < high && input[low] >= key) {
- low++;
- }
- input[high] = input[low];
- indices[high] = indices[low];
- }
- input[low] = key;
- indices[low] = key_index;
- QuickSortIndiceInverse(input, left, low - 1, indices);
- QuickSortIndiceInverse(input, low + 1, right, indices);
- }
- return low;
- }
- } // namespace detection
- } // namespace vision
- } // namespace ultra_infer
|