| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217 |
- // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include "ultra_infer/vision/detection/contrib/yolov5seg/postprocessor.h"
- #include "ultra_infer/vision/utils/utils.h"
- namespace ultra_infer {
- namespace vision {
- namespace detection {
- YOLOv5SegPostprocessor::YOLOv5SegPostprocessor() {
- conf_threshold_ = 0.25;
- nms_threshold_ = 0.5;
- mask_threshold_ = 0.5;
- multi_label_ = true;
- max_wh_ = 7680.0;
- mask_nums_ = 32;
- }
- bool YOLOv5SegPostprocessor::Run(
- const std::vector<FDTensor> &tensors, std::vector<DetectionResult> *results,
- const std::vector<std::map<std::string, std::array<float, 2>>> &ims_info) {
- int batch = tensors[0].shape[0];
- results->resize(batch);
- for (size_t bs = 0; bs < batch; ++bs) {
- // store mask information
- std::vector<std::vector<float>> mask_embeddings;
- (*results)[bs].Clear();
- if (multi_label_) {
- (*results)[bs].Reserve(tensors[0].shape[1] *
- (tensors[0].shape[2] - mask_nums_ - 5));
- } else {
- (*results)[bs].Reserve(tensors[0].shape[1]);
- }
- if (tensors[0].dtype != FDDataType::FP32) {
- FDERROR << "Only support post process with float32 data." << std::endl;
- return false;
- }
- const float *data = reinterpret_cast<const float *>(tensors[0].Data()) +
- bs * tensors[0].shape[1] * tensors[0].shape[2];
- for (size_t i = 0; i < tensors[0].shape[1]; ++i) {
- int s = i * tensors[0].shape[2];
- float cls_conf = data[s + 4];
- float confidence = data[s + 4];
- std::vector<float> mask_embedding(data + s + tensors[0].shape[2] -
- mask_nums_,
- data + s + tensors[0].shape[2]);
- for (size_t k = 0; k < mask_embedding.size(); ++k) {
- mask_embedding[k] *= cls_conf;
- }
- if (multi_label_) {
- for (size_t j = 5; j < tensors[0].shape[2] - mask_nums_; ++j) {
- confidence = data[s + 4];
- const float *class_score = data + s + j;
- confidence *= (*class_score);
- // filter boxes by conf_threshold
- if (confidence <= conf_threshold_) {
- continue;
- }
- int32_t label_id = std::distance(data + s + 5, class_score);
- // convert from [x, y, w, h] to [x1, y1, x2, y2]
- (*results)[bs].boxes.emplace_back(std::array<float, 4>{
- data[s] - data[s + 2] / 2.0f + label_id * max_wh_,
- data[s + 1] - data[s + 3] / 2.0f + label_id * max_wh_,
- data[s + 0] + data[s + 2] / 2.0f + label_id * max_wh_,
- data[s + 1] + data[s + 3] / 2.0f + label_id * max_wh_});
- (*results)[bs].label_ids.push_back(label_id);
- (*results)[bs].scores.push_back(confidence);
- // TODO(wangjunjie06): No zero copy
- mask_embeddings.push_back(mask_embedding);
- }
- } else {
- const float *max_class_score = std::max_element(
- data + s + 5, data + s + tensors[0].shape[2] - mask_nums_);
- confidence *= (*max_class_score);
- // filter boxes by conf_threshold
- if (confidence <= conf_threshold_) {
- continue;
- }
- int32_t label_id = std::distance(data + s + 5, max_class_score);
- // convert from [x, y, w, h] to [x1, y1, x2, y2]
- (*results)[bs].boxes.emplace_back(std::array<float, 4>{
- data[s] - data[s + 2] / 2.0f + label_id * max_wh_,
- data[s + 1] - data[s + 3] / 2.0f + label_id * max_wh_,
- data[s + 0] + data[s + 2] / 2.0f + label_id * max_wh_,
- data[s + 1] + data[s + 3] / 2.0f + label_id * max_wh_});
- (*results)[bs].label_ids.push_back(label_id);
- (*results)[bs].scores.push_back(confidence);
- mask_embeddings.push_back(mask_embedding);
- }
- }
- if ((*results)[bs].boxes.size() == 0) {
- return true;
- }
- // get box index after nms
- std::vector<int> index;
- utils::NMS(&((*results)[bs]), nms_threshold_, &index);
- // deal with mask
- // step1: MatMul, (box_nums * 32) x (32 * 160 * 160) = box_nums * 160 * 160
- // step2: Sigmoid
- // step3: Resize to original image size
- // step4: Select pixels greater than threshold and crop
- (*results)[bs].contain_masks = true;
- (*results)[bs].masks.resize((*results)[bs].boxes.size());
- const float *data_mask =
- reinterpret_cast<const float *>(tensors[1].Data()) +
- bs * tensors[1].shape[1] * tensors[1].shape[2] * tensors[1].shape[3];
- cv::Mat mask_proto =
- cv::Mat(tensors[1].shape[1], tensors[1].shape[2] * tensors[1].shape[3],
- CV_32FC(1), const_cast<float *>(data_mask));
- // vector to cv::Mat for MatMul
- // after push_back, Mat of m*n becomes (m + 1) * n
- cv::Mat mask_proposals;
- for (size_t i = 0; i < index.size(); ++i) {
- mask_proposals.push_back(cv::Mat(mask_embeddings[index[i]]).t());
- }
- cv::Mat matmul_result = (mask_proposals * mask_proto).t();
- cv::Mat masks = matmul_result.reshape(
- (*results)[bs].boxes.size(), {static_cast<int>(tensors[1].shape[2]),
- static_cast<int>(tensors[1].shape[3])});
- // split for boxes nums
- std::vector<cv::Mat> mask_channels;
- cv::split(masks, mask_channels);
- // scale the boxes to the origin image shape
- auto iter_out = ims_info[bs].find("output_shape");
- auto iter_ipt = ims_info[bs].find("input_shape");
- FDASSERT(iter_out != ims_info[bs].end() && iter_ipt != ims_info[bs].end(),
- "Cannot find input_shape or output_shape from im_info.");
- float out_h = iter_out->second[0];
- float out_w = iter_out->second[1];
- float ipt_h = iter_ipt->second[0];
- float ipt_w = iter_ipt->second[1];
- float scale = std::min(out_h / ipt_h, out_w / ipt_w);
- float pad_h = (out_h - ipt_h * scale) / 2;
- float pad_w = (out_w - ipt_w * scale) / 2;
- // for mask
- float pad_h_mask = (float)pad_h / out_h * tensors[1].shape[2];
- float pad_w_mask = (float)pad_w / out_w * tensors[1].shape[3];
- for (size_t i = 0; i < (*results)[bs].boxes.size(); ++i) {
- int32_t label_id = ((*results)[bs].label_ids)[i];
- // clip box
- (*results)[bs].boxes[i][0] =
- (*results)[bs].boxes[i][0] - max_wh_ * label_id;
- (*results)[bs].boxes[i][1] =
- (*results)[bs].boxes[i][1] - max_wh_ * label_id;
- (*results)[bs].boxes[i][2] =
- (*results)[bs].boxes[i][2] - max_wh_ * label_id;
- (*results)[bs].boxes[i][3] =
- (*results)[bs].boxes[i][3] - max_wh_ * label_id;
- (*results)[bs].boxes[i][0] =
- std::max(((*results)[bs].boxes[i][0] - pad_w) / scale, 0.0f);
- (*results)[bs].boxes[i][1] =
- std::max(((*results)[bs].boxes[i][1] - pad_h) / scale, 0.0f);
- (*results)[bs].boxes[i][2] =
- std::max(((*results)[bs].boxes[i][2] - pad_w) / scale, 0.0f);
- (*results)[bs].boxes[i][3] =
- std::max(((*results)[bs].boxes[i][3] - pad_h) / scale, 0.0f);
- (*results)[bs].boxes[i][0] = std::min((*results)[bs].boxes[i][0], ipt_w);
- (*results)[bs].boxes[i][1] = std::min((*results)[bs].boxes[i][1], ipt_h);
- (*results)[bs].boxes[i][2] = std::min((*results)[bs].boxes[i][2], ipt_w);
- (*results)[bs].boxes[i][3] = std::min((*results)[bs].boxes[i][3], ipt_h);
- // deal with mask
- cv::Mat dest, mask;
- // sigmoid
- cv::exp(-mask_channels[i], dest);
- dest = 1.0 / (1.0 + dest);
- // crop mask for feature map
- int x1 = static_cast<int>(pad_w_mask);
- int y1 = static_cast<int>(pad_h_mask);
- int x2 = static_cast<int>(tensors[1].shape[3] - pad_w_mask);
- int y2 = static_cast<int>(tensors[1].shape[2] - pad_h_mask);
- cv::Rect roi(x1, y1, x2 - x1, y2 - y1);
- dest = dest(roi);
- cv::resize(dest, mask, cv::Size(ipt_w, ipt_h), 0, 0, cv::INTER_LINEAR);
- // crop mask for source img
- int x1_src = static_cast<int>(round((*results)[bs].boxes[i][0]));
- int y1_src = static_cast<int>(round((*results)[bs].boxes[i][1]));
- int x2_src = static_cast<int>(round((*results)[bs].boxes[i][2]));
- int y2_src = static_cast<int>(round((*results)[bs].boxes[i][3]));
- cv::Rect roi_src(x1_src, y1_src, x2_src - x1_src, y2_src - y1_src);
- mask = mask(roi_src);
- mask = mask > mask_threshold_;
- // save mask in DetectionResult
- int keep_mask_h = y2_src - y1_src;
- int keep_mask_w = x2_src - x1_src;
- int keep_mask_numel = keep_mask_h * keep_mask_w;
- (*results)[bs].masks[i].Resize(keep_mask_numel);
- (*results)[bs].masks[i].shape = {keep_mask_h, keep_mask_w};
- uint8_t *keep_mask_ptr =
- reinterpret_cast<uint8_t *>((*results)[bs].masks[i].Data());
- std::memcpy(keep_mask_ptr, reinterpret_cast<uint8_t *>(mask.ptr()),
- keep_mask_numel * sizeof(uint8_t));
- }
- }
- return true;
- }
- } // namespace detection
- } // namespace vision
- } // namespace ultra_infer
|