| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133 |
- // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #pragma once
- #include "ultra_infer/ultra_infer_model.h"
- #include "ultra_infer/vision/common/processors/transform.h"
- #include "ultra_infer/vision/common/result.h"
- namespace ultra_infer {
- namespace vision {
- namespace facealign {
- /*! @brief PIPNet model object used when to load a PIPNet model exported by
- * PIPNet.
- */
- class ULTRAINFER_DECL PIPNet : public UltraInferModel {
- public:
- /** \brief Set path of model file and the configuration of runtime.
- *
- * \param[in] model_file Path of model file, e.g ./pipnet.onnx
- * \param[in] params_file Path of parameter file, e.g ppyoloe/model.pdiparams,
- * if the model format is ONNX, this parameter will be ignored \param[in]
- * custom_option RuntimeOption for inference, the default will use cpu, and
- * choose the backend defined in "valid_cpu_backends" \param[in] model_format
- * Model format of the loaded model, default is ONNX format
- */
- PIPNet(const std::string &model_file, const std::string ¶ms_file = "",
- const RuntimeOption &custom_option = RuntimeOption(),
- const ModelFormat &model_format = ModelFormat::ONNX);
- std::string ModelName() const { return "PIPNet"; }
- /** \brief Predict the face detection result for an input image
- *
- * \param[in] im The input image data, comes from cv::imread(), is a 3-D array
- * with layout HWC, BGR format \param[in] result The output face detection
- * result will be written to this structure \return true if the prediction
- * succeeded, otherwise false
- */
- virtual bool Predict(cv::Mat *im, FaceAlignmentResult *result);
- /** \brief Get the number of landmakrs
- *
- * \return Integer type, default num_landmarks = 19
- */
- int GetNumLandmarks() { return num_landmarks_; }
- /** \brief Get the mean values for normalization
- *
- * \return Vector of float values, default mean_vals = {0.485f, 0.456f,
- * 0.406f}
- */
- std::vector<float> GetMeanVals() { return mean_vals_; }
- /** \brief Get the std values for normalization
- *
- * \return Vector of float values, default std_vals = {0.229f, 0.224f, 0.225f}
- */
- std::vector<float> GetStdVals() { return std_vals_; }
- /** \brief Get the input size of image
- *
- * \return Vector of int values, default {256, 256}
- */
- std::vector<int> GetSize() { return size_; }
- /** \brief Set the number of landmarks
- *
- * \param[in] num_landmarks Integer value which represents number of landmarks
- */
- void SetNumLandmarks(const int &num_landmarks);
- /** \brief Set the mean values for normalization
- *
- * \param[in] mean_vals Vector of float values whose length is equal to 3
- */
- void SetMeanVals(const std::vector<float> &mean_vals) {
- mean_vals_ = mean_vals;
- }
- /** \brief Set the std values for normalization
- *
- * \param[in] std_vals Vector of float values whose length is equal to 3
- */
- void SetStdVals(const std::vector<float> &std_vals) { std_vals_ = std_vals; }
- /** \brief Set the input size of image
- *
- * \param[in] size Vector of int values which represents {width, height} of
- * image
- */
- void SetSize(const std::vector<int> &size) { size_ = size; }
- private:
- bool Initialize();
- bool Preprocess(Mat *mat, FDTensor *outputs,
- std::map<std::string, std::array<int, 2>> *im_info);
- bool Postprocess(std::vector<FDTensor> &infer_result,
- FaceAlignmentResult *result,
- const std::map<std::string, std::array<int, 2>> &im_info);
- void GenerateLandmarks(std::vector<FDTensor> &infer_result,
- FaceAlignmentResult *result, float img_height,
- float img_width);
- std::map<int, int> num_lms_map_;
- std::map<int, int> max_len_map_;
- std::map<int, std::vector<int>> reverse_index1_map_;
- std::map<int, std::vector<int>> reverse_index2_map_;
- int num_nb_;
- int net_stride_;
- // Now PIPNet support num_landmarks in {19, 29, 68, 98}
- std::vector<int> supported_num_landmarks_;
- // tuple of (width, height), default (256, 256)
- std::vector<int> size_;
- // Mean parameters for normalize, size should be the the same as channels,
- // default mean_vals = {0.485f, 0.456f, 0.406f}
- std::vector<float> mean_vals_;
- // Std parameters for normalize, size should be the the same as channels,
- // default std_vals = {0.229f, 0.224f, 0.225f}
- std::vector<float> std_vals_;
- // number of landmarks
- int num_landmarks_;
- };
- } // namespace facealign
- } // namespace vision
- } // namespace ultra_infer
|