| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142 |
- // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #pragma once
- #include "ultra_infer/ultra_infer_model.h"
- #include "ultra_infer/vision/common/processors/transform.h"
- #include "ultra_infer/vision/common/result.h"
- #include <unordered_map>
- namespace ultra_infer {
- namespace vision {
- namespace facedet {
- /*! @brief SCRFD model object used when to load a SCRFD model exported by SCRFD.
- */
- class ULTRAINFER_DECL SCRFD : public UltraInferModel {
- public:
- /** \brief Set path of model file and the configuration of runtime.
- *
- * \param[in] model_file Path of model file, e.g ./scrfd.onnx
- * \param[in] params_file Path of parameter file, e.g ppyoloe/model.pdiparams,
- * if the model format is ONNX, this parameter will be ignored \param[in]
- * custom_option RuntimeOption for inference, the default will use cpu, and
- * choose the backend defined in "valid_cpu_backends" \param[in] model_format
- * Model format of the loaded model, default is ONNX format
- */
- SCRFD(const std::string &model_file, const std::string ¶ms_file = "",
- const RuntimeOption &custom_option = RuntimeOption(),
- const ModelFormat &model_format = ModelFormat::ONNX);
- std::string ModelName() const { return "scrfd"; }
- /** \brief Predict the face detection result for an input image
- *
- * \param[in] im The input image data, comes from cv::imread(), is a 3-D array
- * with layout HWC, BGR format \param[in] result The output face detection
- * result will be written to this structure \param[in] conf_threshold
- * confidence threshold for postprocessing, default is 0.25 \param[in]
- * nms_iou_threshold iou threshold for NMS, default is 0.4 \return true if
- * the prediction succeeded, otherwise false
- */
- virtual bool Predict(cv::Mat *im, FaceDetectionResult *result,
- float conf_threshold = 0.25f,
- float nms_iou_threshold = 0.4f);
- /*! @brief
- Argument for image preprocessing step, tuple of (width, height), decide the
- target size after resize, default (640, 640)
- */
- std::vector<int> size;
- // padding value, size should be the same as channels
- std::vector<float> padding_value;
- // only pad to the minimum rectangle which height and width is times of stride
- bool is_mini_pad;
- // while is_mini_pad = false and is_no_pad = true,
- // will resize the image to the set size
- bool is_no_pad;
- // if is_scale_up is false, the input image only can be zoom out,
- // the maximum resize scale cannot exceed 1.0
- bool is_scale_up;
- // padding stride, for is_mini_pad
- int stride;
- /*! @brief
- Argument for image postprocessing step, downsample strides (namely, steps) for
- SCRFD to generate anchors, will take (8,16,32) as default values
- */
- std::vector<int> downsample_strides;
- /*! @brief
- Argument for image postprocessing step, landmarks_per_face, default 5 in SCRFD
- */
- int landmarks_per_face;
- /*! @brief
- Argument for image postprocessing step, the outputs of onnx file with key
- points features or not, default true
- */
- bool use_kps;
- /*! @brief
- Argument for image postprocessing step, the upperbond number of boxes
- processed by nms, default 30000
- */
- int max_nms;
- /*! @brief
- Argument for image postprocessing step, anchor number of each stride, default
- 2
- */
- unsigned int num_anchors;
- /// This function will disable normalize and hwc2chw in preprocessing step.
- void DisableNormalize();
- /// This function will disable hwc2chw in preprocessing step.
- void DisablePermute();
- private:
- bool Initialize();
- bool Preprocess(Mat *mat, FDTensor *output,
- std::map<std::string, std::array<float, 2>> *im_info);
- bool Postprocess(std::vector<FDTensor> &infer_result,
- FaceDetectionResult *result,
- const std::map<std::string, std::array<float, 2>> &im_info,
- float conf_threshold, float nms_iou_threshold);
- void GeneratePoints();
- void LetterBox(Mat *mat, const std::vector<int> &size,
- const std::vector<float> &color, bool _auto,
- bool scale_fill = false, bool scale_up = true,
- int stride = 32);
- bool is_dynamic_input_;
- bool center_points_is_update_;
- typedef struct {
- float cx;
- float cy;
- } SCRFDPoint;
- std::unordered_map<int, std::vector<SCRFDPoint>> center_points_;
- // for recording the switch of normalize
- bool disable_normalize_ = false;
- // for recording the switch of hwc2chw
- bool disable_permute_ = false;
- };
- } // namespace facedet
- } // namespace vision
- } // namespace ultra_infer
|