| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280 |
- // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include "ultra_infer/vision/facedet/contrib/yolov5face.h"
- #include "ultra_infer/utils/perf.h"
- #include "ultra_infer/vision/utils/utils.h"
- namespace ultra_infer {
- namespace vision {
- namespace facedet {
- void LetterBox(Mat *mat, std::vector<int> size, std::vector<float> color,
- bool _auto, bool scale_fill = false, bool scale_up = true,
- int stride = 32) {
- float scale =
- std::min(size[1] * 1.0 / mat->Height(), size[0] * 1.0 / mat->Width());
- if (!scale_up) {
- scale = std::min(scale, 1.0f);
- }
- int resize_h = int(round(mat->Height() * scale));
- int resize_w = int(round(mat->Width() * scale));
- int pad_w = size[0] - resize_w;
- int pad_h = size[1] - resize_h;
- if (_auto) {
- pad_h = pad_h % stride;
- pad_w = pad_w % stride;
- } else if (scale_fill) {
- pad_h = 0;
- pad_w = 0;
- resize_h = size[1];
- resize_w = size[0];
- }
- if (resize_h != mat->Height() || resize_w != mat->Width()) {
- Resize::Run(mat, resize_w, resize_h);
- }
- if (pad_h > 0 || pad_w > 0) {
- float half_h = pad_h * 1.0 / 2;
- int top = int(round(half_h - 0.1));
- int bottom = int(round(half_h + 0.1));
- float half_w = pad_w * 1.0 / 2;
- int left = int(round(half_w - 0.1));
- int right = int(round(half_w + 0.1));
- Pad::Run(mat, top, bottom, left, right, color);
- }
- }
- YOLOv5Face::YOLOv5Face(const std::string &model_file,
- const std::string ¶ms_file,
- const RuntimeOption &custom_option,
- const ModelFormat &model_format) {
- if (model_format == ModelFormat::ONNX) {
- valid_cpu_backends = {Backend::ORT};
- valid_gpu_backends = {Backend::ORT, Backend::TRT};
- } else {
- valid_cpu_backends = {Backend::PDINFER, Backend::ORT, Backend::LITE};
- valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
- }
- runtime_option = custom_option;
- runtime_option.model_format = model_format;
- runtime_option.model_file = model_file;
- runtime_option.params_file = params_file;
- initialized = Initialize();
- }
- bool YOLOv5Face::Initialize() {
- // parameters for preprocess
- size = {640, 640};
- padding_value = {114.0, 114.0, 114.0};
- is_mini_pad = false;
- is_no_pad = false;
- is_scale_up = false;
- stride = 32;
- landmarks_per_face = 5;
- if (!InitRuntime()) {
- FDERROR << "Failed to initialize ultra_infer backend." << std::endl;
- return false;
- }
- // Check if the input shape is dynamic after Runtime already initialized,
- // Note that, We need to force is_mini_pad 'false' to keep static
- // shape after padding (LetterBox) when the is_dynamic_input_ is 'false'.
- is_dynamic_input_ = false;
- auto shape = InputInfoOfRuntime(0).shape;
- for (int i = 0; i < shape.size(); ++i) {
- // if height or width is dynamic
- if (i >= 2 && shape[i] <= 0) {
- is_dynamic_input_ = true;
- break;
- }
- }
- if (!is_dynamic_input_) {
- is_mini_pad = false;
- }
- return true;
- }
- bool YOLOv5Face::Preprocess(
- Mat *mat, FDTensor *output,
- std::map<std::string, std::array<float, 2>> *im_info) {
- // process after image load
- float ratio = std::min(size[1] * 1.0f / static_cast<float>(mat->Height()),
- size[0] * 1.0f / static_cast<float>(mat->Width()));
- if (std::fabs(ratio - 1.0f) > 1e-06) {
- int interp = cv::INTER_LINEAR;
- if (ratio > 1.0) {
- interp = cv::INTER_LINEAR;
- }
- int resize_h = int(round(static_cast<float>(mat->Height()) * ratio));
- int resize_w = int(round(static_cast<float>(mat->Width()) * ratio));
- Resize::Run(mat, resize_w, resize_h, -1, -1, interp);
- }
- // yolov5face's preprocess steps
- // 1. letterbox
- // 2. BGR->RGB
- // 3. HWC->CHW
- LetterBox(mat, size, padding_value, is_mini_pad, is_no_pad, is_scale_up,
- stride);
- BGR2RGB::Run(mat);
- // Normalize::Run(mat, std::vector<float>(mat->Channels(), 0.0),
- // std::vector<float>(mat->Channels(), 1.0));
- // Compute `result = mat * alpha + beta` directly by channel
- std::vector<float> alpha = {1.0f / 255.0f, 1.0f / 255.0f, 1.0f / 255.0f};
- std::vector<float> beta = {0.0f, 0.0f, 0.0f};
- Convert::Run(mat, alpha, beta);
- // Record output shape of preprocessed image
- (*im_info)["output_shape"] = {static_cast<float>(mat->Height()),
- static_cast<float>(mat->Width())};
- HWC2CHW::Run(mat);
- Cast::Run(mat, "float");
- mat->ShareWithTensor(output);
- output->shape.insert(output->shape.begin(), 1); // reshape to n, c, h, w
- return true;
- }
- bool YOLOv5Face::Postprocess(
- FDTensor &infer_result, FaceDetectionResult *result,
- const std::map<std::string, std::array<float, 2>> &im_info,
- float conf_threshold, float nms_iou_threshold) {
- // infer_result: (1,n,16) 16=4+1+10+1
- FDASSERT(infer_result.shape[0] == 1, "Only support batch =1 now.");
- if (infer_result.dtype != FDDataType::FP32) {
- FDERROR << "Only support post process with float32 data." << std::endl;
- return false;
- }
- result->Clear();
- // must be setup landmarks_per_face before reserve
- result->landmarks_per_face = landmarks_per_face;
- result->Reserve(infer_result.shape[1]);
- float *data = static_cast<float *>(infer_result.Data());
- for (size_t i = 0; i < infer_result.shape[1]; ++i) {
- float *reg_cls_ptr = data + (i * infer_result.shape[2]);
- float obj_conf = reg_cls_ptr[4];
- float cls_conf = reg_cls_ptr[15];
- float confidence = obj_conf * cls_conf;
- // filter boxes by conf_threshold
- if (confidence <= conf_threshold) {
- continue;
- }
- float x = reg_cls_ptr[0];
- float y = reg_cls_ptr[1];
- float w = reg_cls_ptr[2];
- float h = reg_cls_ptr[3];
- // convert from [x, y, w, h] to [x1, y1, x2, y2]
- result->boxes.emplace_back(std::array<float, 4>{
- (x - w / 2.f), (y - h / 2.f), (x + w / 2.f), (y + h / 2.f)});
- result->scores.push_back(confidence);
- // decode landmarks (default 5 landmarks)
- if (landmarks_per_face > 0) {
- float *landmarks_ptr = reg_cls_ptr + 5;
- for (size_t j = 0; j < landmarks_per_face * 2; j += 2) {
- result->landmarks.emplace_back(
- std::array<float, 2>{landmarks_ptr[j], landmarks_ptr[j + 1]});
- }
- }
- }
- if (result->boxes.size() == 0) {
- return true;
- }
- utils::NMS(result, nms_iou_threshold);
- // scale the boxes to the origin image shape
- auto iter_out = im_info.find("output_shape");
- auto iter_ipt = im_info.find("input_shape");
- FDASSERT(iter_out != im_info.end() && iter_ipt != im_info.end(),
- "Cannot find input_shape or output_shape from im_info.");
- float out_h = iter_out->second[0];
- float out_w = iter_out->second[1];
- float ipt_h = iter_ipt->second[0];
- float ipt_w = iter_ipt->second[1];
- float scale = std::min(out_h / ipt_h, out_w / ipt_w);
- if (!is_scale_up) {
- scale = std::min(scale, 1.0f);
- }
- float pad_h = (out_h - ipt_h * scale) / 2.f;
- float pad_w = (out_w - ipt_w * scale) / 2.f;
- if (is_mini_pad) {
- pad_h = static_cast<float>(static_cast<int>(pad_h) % stride);
- pad_w = static_cast<float>(static_cast<int>(pad_w) % stride);
- }
- // scale and clip box
- for (size_t i = 0; i < result->boxes.size(); ++i) {
- result->boxes[i][0] = std::max((result->boxes[i][0] - pad_w) / scale, 0.0f);
- result->boxes[i][1] = std::max((result->boxes[i][1] - pad_h) / scale, 0.0f);
- result->boxes[i][2] = std::max((result->boxes[i][2] - pad_w) / scale, 0.0f);
- result->boxes[i][3] = std::max((result->boxes[i][3] - pad_h) / scale, 0.0f);
- result->boxes[i][0] = std::min(result->boxes[i][0], ipt_w - 1.0f);
- result->boxes[i][1] = std::min(result->boxes[i][1], ipt_h - 1.0f);
- result->boxes[i][2] = std::min(result->boxes[i][2], ipt_w - 1.0f);
- result->boxes[i][3] = std::min(result->boxes[i][3], ipt_h - 1.0f);
- }
- // scale and clip landmarks
- for (size_t i = 0; i < result->landmarks.size(); ++i) {
- result->landmarks[i][0] =
- std::max((result->landmarks[i][0] - pad_w) / scale, 0.0f);
- result->landmarks[i][1] =
- std::max((result->landmarks[i][1] - pad_h) / scale, 0.0f);
- result->landmarks[i][0] = std::min(result->landmarks[i][0], ipt_w - 1.0f);
- result->landmarks[i][1] = std::min(result->landmarks[i][1], ipt_h - 1.0f);
- }
- return true;
- }
- bool YOLOv5Face::Predict(cv::Mat *im, FaceDetectionResult *result,
- float conf_threshold, float nms_iou_threshold) {
- Mat mat(*im);
- std::vector<FDTensor> input_tensors(1);
- std::map<std::string, std::array<float, 2>> im_info;
- // Record the shape of image and the shape of preprocessed image
- im_info["input_shape"] = {static_cast<float>(mat.Height()),
- static_cast<float>(mat.Width())};
- im_info["output_shape"] = {static_cast<float>(mat.Height()),
- static_cast<float>(mat.Width())};
- if (!Preprocess(&mat, &input_tensors[0], &im_info)) {
- FDERROR << "Failed to preprocess input image." << std::endl;
- return false;
- }
- input_tensors[0].name = InputInfoOfRuntime(0).name;
- std::vector<FDTensor> output_tensors;
- if (!Infer(input_tensors, &output_tensors)) {
- FDERROR << "Failed to inference." << std::endl;
- return false;
- }
- if (!Postprocess(output_tensors[0], result, im_info, conf_threshold,
- nms_iou_threshold)) {
- FDERROR << "Failed to post process." << std::endl;
- return false;
- }
- return true;
- }
- } // namespace facedet
- } // namespace vision
- } // namespace ultra_infer
|