fsanet.h 2.6 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768
  1. // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // http://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. #pragma once
  15. #include "ultra_infer/ultra_infer_model.h"
  16. #include "ultra_infer/vision/common/processors/transform.h"
  17. #include "ultra_infer/vision/common/result.h"
  18. namespace ultra_infer {
  19. namespace vision {
  20. namespace headpose {
  21. /*! @brief FSANet model object used when to load a FSANet model exported by
  22. * FSANet.
  23. */
  24. class ULTRAINFER_DECL FSANet : public UltraInferModel {
  25. public:
  26. /** \brief Set path of model file and the configuration of runtime.
  27. *
  28. * \param[in] model_file Path of model file, e.g ./fsanet-var.onnx
  29. * \param[in] params_file Path of parameter file, e.g ppyoloe/model.pdiparams,
  30. * if the model format is ONNX, this parameter will be ignored \param[in]
  31. * custom_option RuntimeOption for inference, the default will use cpu, and
  32. * choose the backend defined in "valid_cpu_backends" \param[in] model_format
  33. * Model format of the loaded model, default is ONNX format
  34. */
  35. FSANet(const std::string &model_file, const std::string &params_file = "",
  36. const RuntimeOption &custom_option = RuntimeOption(),
  37. const ModelFormat &model_format = ModelFormat::ONNX);
  38. std::string ModelName() const { return "FSANet"; }
  39. /** \brief Predict the face detection result for an input image
  40. *
  41. * \param[in] im The input image data, comes from cv::imread(), is a 3-D array
  42. * with layout HWC, BGR format \param[in] result The output face detection
  43. * result will be written to this structure \return true if the prediction
  44. * succeeded, otherwise false
  45. */
  46. virtual bool Predict(cv::Mat *im, HeadPoseResult *result);
  47. /// tuple of (width, height), default (64, 64)
  48. std::vector<int> size;
  49. private:
  50. bool Initialize();
  51. bool Preprocess(Mat *mat, FDTensor *outputs,
  52. std::map<std::string, std::array<int, 2>> *im_info);
  53. bool Postprocess(FDTensor &infer_result, HeadPoseResult *result,
  54. const std::map<std::string, std::array<int, 2>> &im_info);
  55. };
  56. } // namespace headpose
  57. } // namespace vision
  58. } // namespace ultra_infer