| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123 |
- // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #pragma once
- #include "ultra_infer/ultra_infer_model.h"
- #include "ultra_infer/utils/unique_ptr.h"
- #include "ultra_infer/vision/common/processors/transform.h"
- #include "ultra_infer/vision/common/result.h"
- #include "ultra_infer/vision/ocr/ppocr/cls_postprocessor.h"
- #include "ultra_infer/vision/ocr/ppocr/cls_preprocessor.h"
- #include "ultra_infer/vision/ocr/ppocr/utils/ocr_postprocess_op.h"
- namespace ultra_infer {
- namespace vision {
- /** \brief All OCR series model APIs are defined inside this namespace
- *
- */
- namespace ocr {
- /*! @brief Classifier object is used to load the classification model provided
- * by PaddleOCR.
- */
- class ULTRAINFER_DECL Classifier : public UltraInferModel {
- public:
- Classifier();
- /** \brief Set path of model file, and the configuration of runtime
- *
- * \param[in] model_file Path of model file, e.g
- * ./ch_ppocr_mobile_v2.0_cls_infer/model.pdmodel. \param[in] params_file Path
- * of parameter file, e.g ./ch_ppocr_mobile_v2.0_cls_infer/model.pdiparams, if
- * the model format is ONNX, this parameter will be ignored. \param[in]
- * custom_option RuntimeOption for inference, the default will use cpu, and
- * choose the backend defined in `valid_cpu_backends`. \param[in] model_format
- * Model format of the loaded model, default is Paddle format.
- */
- Classifier(const std::string &model_file, const std::string ¶ms_file = "",
- const RuntimeOption &custom_option = RuntimeOption(),
- const ModelFormat &model_format = ModelFormat::PADDLE);
- /** \brief Clone a new Classifier with less memory usage when multiple
- * instances of the same model are created
- *
- * \return new Classifier* type unique pointer
- */
- virtual std::unique_ptr<Classifier> Clone() const;
- /// Get model's name
- std::string ModelName() const { return "ppocr/ocr_cls"; }
- /** \brief Predict the input image and get OCR classification model
- * cls_result.
- *
- * \param[in] img The input image data, comes from cv::imread(), is a 3-D
- * array with layout HWC, BGR format. \param[in] cls_label The label result of
- * cls model will be written in to this param. \param[in] cls_score The score
- * result of cls model will be written in to this param. \return true if the
- * prediction is succeeded, otherwise false.
- */
- virtual bool Predict(const cv::Mat &img, int32_t *cls_label,
- float *cls_score);
- /** \brief Predict the input image and get OCR recognition model result.
- *
- * \param[in] img The input image data, comes from cv::imread(), is a 3-D
- * array with layout HWC, BGR format. \param[in] ocr_result The output of OCR
- * recognition model result will be written to this structure. \return true if
- * the prediction is succeeded, otherwise false.
- */
- virtual bool Predict(const cv::Mat &img, vision::OCRResult *ocr_result);
- /** \brief BatchPredict the input image and get OCR classification model
- * result.
- *
- * \param[in] img The input image data, comes from cv::imread(), is a 3-D
- * array with layout HWC, BGR format. \param[in] ocr_result The output of OCR
- * classification model result will be written to this structure. \return true
- * if the prediction is succeeded, otherwise false.
- */
- virtual bool BatchPredict(const std::vector<cv::Mat> &images,
- vision::OCRResult *ocr_result);
- /** \brief BatchPredict the input image and get OCR classification model
- * cls_result.
- *
- * \param[in] images The list of input image data, comes from cv::imread(), is
- * a 3-D array with layout HWC, BGR format. \param[in] cls_labels The label
- * results of cls model will be written in to this vector. \param[in]
- * cls_scores The score results of cls model will be written in to this
- * vector. \return true if the prediction is succeeded, otherwise false.
- */
- virtual bool BatchPredict(const std::vector<cv::Mat> &images,
- std::vector<int32_t> *cls_labels,
- std::vector<float> *cls_scores);
- virtual bool BatchPredict(const std::vector<cv::Mat> &images,
- std::vector<int32_t> *cls_labels,
- std::vector<float> *cls_scores, size_t start_index,
- size_t end_index);
- /// Get preprocessor reference of ClassifierPreprocessor
- virtual ClassifierPreprocessor &GetPreprocessor() { return preprocessor_; }
- /// Get postprocessor reference of ClassifierPostprocessor
- virtual ClassifierPostprocessor &GetPostprocessor() { return postprocessor_; }
- private:
- bool Initialize();
- ClassifierPreprocessor preprocessor_;
- ClassifierPostprocessor postprocessor_;
- };
- } // namespace ocr
- } // namespace vision
- } // namespace ultra_infer
|