resnet.py 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320
  1. # copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from __future__ import absolute_import
  15. from __future__ import division
  16. from __future__ import print_function
  17. import os
  18. import math
  19. import paddle
  20. from paddle import ParamAttr
  21. import paddle.nn as nn
  22. import paddle.nn.functional as F
  23. from paddle.nn.initializer import Normal
  24. __all__ = ["ResNet18", "ResNet34", "ResNet50", "ResNet101", "ResNet152"]
  25. class ConvBNLayer(nn.Layer):
  26. def __init__(self,
  27. num_channels,
  28. num_filters,
  29. filter_size,
  30. stride=1,
  31. dilation=1,
  32. groups=1,
  33. act=None,
  34. lr_mult=1.0,
  35. name=None,
  36. data_format="NCHW"):
  37. super(ConvBNLayer, self).__init__()
  38. conv_stdv = filter_size * filter_size * num_filters
  39. self._conv = nn.Conv2D(
  40. in_channels=num_channels,
  41. out_channels=num_filters,
  42. kernel_size=filter_size,
  43. stride=stride,
  44. padding=(filter_size - 1) // 2,
  45. dilation=dilation,
  46. groups=groups,
  47. weight_attr=ParamAttr(
  48. name=name + "_weights",
  49. learning_rate=lr_mult,
  50. initializer=Normal(0, math.sqrt(2. / conv_stdv))),
  51. bias_attr=False,
  52. data_format=data_format)
  53. if name == "conv1":
  54. bn_name = "bn_" + name
  55. else:
  56. bn_name = "bn" + name[3:]
  57. self._batch_norm = nn.BatchNorm(
  58. num_filters,
  59. act=act,
  60. param_attr=ParamAttr(name=bn_name + "_scale"),
  61. bias_attr=ParamAttr(bn_name + "_offset"),
  62. moving_mean_name=bn_name + "_mean",
  63. moving_variance_name=bn_name + "_variance",
  64. data_layout=data_format)
  65. def forward(self, inputs):
  66. y = self._conv(inputs)
  67. y = self._batch_norm(y)
  68. return y
  69. class BottleneckBlock(nn.Layer):
  70. def __init__(self,
  71. num_channels,
  72. num_filters,
  73. stride,
  74. shortcut=True,
  75. name=None,
  76. lr_mult=1.0,
  77. dilation=1,
  78. data_format="NCHW"):
  79. super(BottleneckBlock, self).__init__()
  80. self.conv0 = ConvBNLayer(
  81. num_channels=num_channels,
  82. num_filters=num_filters,
  83. filter_size=1,
  84. dilation=dilation,
  85. act="relu",
  86. lr_mult=lr_mult,
  87. name=name + "_branch2a",
  88. data_format=data_format)
  89. self.conv1 = ConvBNLayer(
  90. num_channels=num_filters,
  91. num_filters=num_filters,
  92. filter_size=3,
  93. dilation=dilation,
  94. stride=stride,
  95. act="relu",
  96. lr_mult=lr_mult,
  97. name=name + "_branch2b",
  98. data_format=data_format)
  99. self.conv2 = ConvBNLayer(
  100. num_channels=num_filters,
  101. num_filters=num_filters * 4,
  102. filter_size=1,
  103. dilation=dilation,
  104. act=None,
  105. lr_mult=lr_mult,
  106. name=name + "_branch2c",
  107. data_format=data_format)
  108. if not shortcut:
  109. self.short = ConvBNLayer(
  110. num_channels=num_channels,
  111. num_filters=num_filters * 4,
  112. filter_size=1,
  113. dilation=dilation,
  114. stride=stride,
  115. lr_mult=lr_mult,
  116. name=name + "_branch1",
  117. data_format=data_format)
  118. self.shortcut = shortcut
  119. self._num_channels_out = num_filters * 4
  120. def forward(self, inputs):
  121. y = self.conv0(inputs)
  122. conv1 = self.conv1(y)
  123. conv2 = self.conv2(conv1)
  124. if self.shortcut:
  125. short = inputs
  126. else:
  127. short = self.short(inputs)
  128. y = paddle.add(x=short, y=conv2)
  129. y = F.relu(y)
  130. return y
  131. class BasicBlock(nn.Layer):
  132. def __init__(self,
  133. num_channels,
  134. num_filters,
  135. stride,
  136. shortcut=True,
  137. name=None,
  138. data_format="NCHW"):
  139. super(BasicBlock, self).__init__()
  140. self.stride = stride
  141. self.conv0 = ConvBNLayer(
  142. num_channels=num_channels,
  143. num_filters=num_filters,
  144. filter_size=3,
  145. stride=stride,
  146. act="relu",
  147. name=name + "_branch2a",
  148. data_format=data_format)
  149. self.conv1 = ConvBNLayer(
  150. num_channels=num_filters,
  151. num_filters=num_filters,
  152. filter_size=3,
  153. act=None,
  154. name=name + "_branch2b",
  155. data_format=data_format)
  156. if not shortcut:
  157. self.short = ConvBNLayer(
  158. num_channels=num_channels,
  159. num_filters=num_filters,
  160. filter_size=1,
  161. stride=stride,
  162. name=name + "_branch1",
  163. data_format=data_format)
  164. self.shortcut = shortcut
  165. def forward(self, inputs):
  166. y = self.conv0(inputs)
  167. conv1 = self.conv1(y)
  168. if self.shortcut:
  169. short = inputs
  170. else:
  171. short = self.short(inputs)
  172. y = paddle.add(x=short, y=conv1)
  173. y = F.relu(y)
  174. return y
  175. class ResNet(nn.Layer):
  176. def __init__(self,
  177. layers=50,
  178. lr_mult=1.0,
  179. last_conv_stride=2,
  180. last_conv_dilation=1):
  181. super(ResNet, self).__init__()
  182. self.layers = layers
  183. self.data_format = "NCHW"
  184. self.input_image_channel = 3
  185. supported_layers = [18, 34, 50, 101, 152]
  186. assert layers in supported_layers, \
  187. "supported layers are {} but input layer is {}".format(
  188. supported_layers, layers)
  189. if layers == 18:
  190. depth = [2, 2, 2, 2]
  191. elif layers == 34 or layers == 50:
  192. depth = [3, 4, 6, 3]
  193. elif layers == 101:
  194. depth = [3, 4, 23, 3]
  195. elif layers == 152:
  196. depth = [3, 8, 36, 3]
  197. num_channels = [64, 256, 512,
  198. 1024] if layers >= 50 else [64, 64, 128, 256]
  199. num_filters = [64, 128, 256, 512]
  200. self.conv = ConvBNLayer(
  201. num_channels=self.input_image_channel,
  202. num_filters=64,
  203. filter_size=7,
  204. stride=2,
  205. act="relu",
  206. lr_mult=lr_mult,
  207. name="conv1",
  208. data_format=self.data_format)
  209. self.pool2d_max = nn.MaxPool2D(
  210. kernel_size=3, stride=2, padding=1, data_format=self.data_format)
  211. self.block_list = []
  212. if layers >= 50:
  213. for block in range(len(depth)):
  214. shortcut = False
  215. for i in range(depth[block]):
  216. if layers in [101, 152] and block == 2:
  217. if i == 0:
  218. conv_name = "res" + str(block + 2) + "a"
  219. else:
  220. conv_name = "res" + str(block + 2) + "b" + str(i)
  221. else:
  222. conv_name = "res" + str(block + 2) + chr(97 + i)
  223. if i != 0 or block == 0:
  224. stride = 1
  225. elif block == len(depth) - 1:
  226. stride = last_conv_stride
  227. else:
  228. stride = 2
  229. bottleneck_block = self.add_sublayer(
  230. conv_name,
  231. BottleneckBlock(
  232. num_channels=num_channels[block]
  233. if i == 0 else num_filters[block] * 4,
  234. num_filters=num_filters[block],
  235. stride=stride,
  236. shortcut=shortcut,
  237. name=conv_name,
  238. lr_mult=lr_mult,
  239. dilation=last_conv_dilation
  240. if block == len(depth) - 1 else 1,
  241. data_format=self.data_format))
  242. self.block_list.append(bottleneck_block)
  243. shortcut = True
  244. else:
  245. for block in range(len(depth)):
  246. shortcut = False
  247. for i in range(depth[block]):
  248. conv_name = "res" + str(block + 2) + chr(97 + i)
  249. basic_block = self.add_sublayer(
  250. conv_name,
  251. BasicBlock(
  252. num_channels=num_channels[block]
  253. if i == 0 else num_filters[block],
  254. num_filters=num_filters[block],
  255. stride=2 if i == 0 and block != 0 else 1,
  256. shortcut=shortcut,
  257. name=conv_name,
  258. data_format=self.data_format))
  259. self.block_list.append(basic_block)
  260. shortcut = True
  261. def forward(self, inputs):
  262. y = self.conv(inputs)
  263. y = self.pool2d_max(y)
  264. for block in self.block_list:
  265. y = block(y)
  266. return y
  267. def ResNet18(**args):
  268. model = ResNet(layers=18, **args)
  269. return model
  270. def ResNet34(**args):
  271. model = ResNet(layers=34, **args)
  272. return model
  273. def ResNet50(pretrained=None, **args):
  274. model = ResNet(layers=50, **args)
  275. if pretrained is not None:
  276. if not (os.path.isdir(pretrained) or
  277. os.path.exists(pretrained + '.pdparams')):
  278. raise ValueError("Model pretrain path {} does not "
  279. "exists.".format(pretrained))
  280. param_state_dict = paddle.load(pretrained + '.pdparams')
  281. model.set_dict(param_state_dict)
  282. return model
  283. def ResNet101(pretrained=None, **args):
  284. model = ResNet(layers=101, **args)
  285. if pretrained is not None:
  286. if not (os.path.isdir(pretrained) or
  287. os.path.exists(pretrained + '.pdparams')):
  288. raise ValueError("Model pretrain path {} does not "
  289. "exists.".format(pretrained))
  290. param_state_dict = paddle.load(pretrained + '.pdparams')
  291. model.set_dict(param_state_dict)
  292. return model
  293. def ResNet152(**args):
  294. model = ResNet(layers=152, **args)
  295. return model