pipeline.py 4.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from typing import Any, Dict, Optional, Union, Tuple
  15. import numpy as np
  16. from ...utils.pp_option import PaddlePredictorOption
  17. from ..base import BasePipeline
  18. # [TODO] 待更新models_new到models
  19. from ...models_new.object_detection.result import DetResult
  20. class ObjectDetectionPipeline(BasePipeline):
  21. """Object Detection Pipeline"""
  22. entities = "object_detection"
  23. def __init__(
  24. self,
  25. config: Dict,
  26. device: str = None,
  27. pp_option: PaddlePredictorOption = None,
  28. use_hpip: bool = False,
  29. ) -> None:
  30. """
  31. Initializes the class with given configurations and options.
  32. Args:
  33. config (Dict): Configuration dictionary containing model and other parameters.
  34. device (str): The device to run the prediction on. Default is None.
  35. pp_option (PaddlePredictorOption): Options for PaddlePaddle predictor. Default is None.
  36. use_hpip (bool): Whether to use high-performance inference (hpip) for prediction. Defaults to False.
  37. """
  38. super().__init__(device=device, pp_option=pp_option, use_hpip=use_hpip)
  39. model_cfg = config["SubModules"]["ObjectDetection"]
  40. model_kwargs = {}
  41. if "threshold" in model_cfg:
  42. model_kwargs["threshold"] = model_cfg["threshold"]
  43. if "img_size" in model_cfg:
  44. model_kwargs["img_size"] = model_cfg["img_size"]
  45. if "layout_nms" in model_cfg:
  46. model_kwargs["layout_nms"] = model_cfg["layout_nms"]
  47. if "layout_unclip_ratio" in model_cfg:
  48. model_kwargs["layout_unclip_ratio"] = model_cfg["layout_unclip_ratio"]
  49. if "layout_merge_bboxes_mode" in model_cfg:
  50. model_kwargs["layout_merge_bboxes_mode"] = model_cfg["layout_merge_bboxes_mode"]
  51. self.det_model = self.create_model(model_cfg, **model_kwargs)
  52. def predict(
  53. self,
  54. input: str | list[str] | np.ndarray | list[np.ndarray],
  55. threshold: Optional[Union[float, dict]] = None,
  56. layout_nms: bool = False,
  57. layout_unclip_ratio: Optional[Union[float, Tuple[float, float]]] = None,
  58. layout_merge_bboxes_mode: Optional[str] = None,
  59. **kwargs,
  60. ) -> DetResult:
  61. """Predicts object detection results for the given input.
  62. Args:
  63. input (str | list[str] | np.ndarray | list[np.ndarray]): The input image(s) or path(s) to the images.
  64. img_size (Optional[Union[int, Tuple[int, int]]]): The size of the input image. Default is None.
  65. threshold (Optional[float]): The threshold value to filter out low-confidence predictions. Default is None.
  66. layout_nms (bool, optional): Whether to use layout-aware NMS. Defaults to False.
  67. layout_unclip_ratio (Optional[Union[float, Tuple[float, float]]], optional): The ratio of unclipping the bounding box.
  68. Defaults to None.
  69. If it's a single number, then both width and height are used.
  70. If it's a tuple of two numbers, then they are used separately for width and height respectively.
  71. If it's None, then no unclipping will be performed.
  72. layout_merge_bboxes_mode (Optional[str], optional): The mode for merging bounding boxes. Defaults to None.
  73. **kwargs: Additional keyword arguments that can be passed to the function.
  74. Returns:
  75. DetResult: The predicted detection results.
  76. """
  77. yield from self.det_model(
  78. input,
  79. threshold=threshold,
  80. layout_nms=layout_nms,
  81. layout_unclip_ratio=layout_unclip_ratio,
  82. layout_merge_bboxes_mode=layout_merge_bboxes_mode,
  83. **kwargs)