表格单元格检测模块是表格识别任务的关键组成部分,负责在表格图像中定位和标记每个单元格区域,该模块的性能直接影响到整个表格识别过程的准确性和效率。表格单元格检测模块通常会输出各个单元格区域的边界框(Bounding Boxes),这些边界框将作为输入传递给表格识别相关产线进行后续处理。
| 模型 | 模型下载链接 | mAP(%) | GPU推理耗时 (ms) | CPU推理耗时 (ms) | 模型存储大小 (M) | 介绍 |
|---|---|---|---|---|---|---|
| RT-DETR-L_wired_table_cell_det | 推理模型/训练模型 | -- | -- | -- | 124M | RT-DETR 是第一个实时的端到端目标检测模型。百度飞桨视觉团队基于 RT-DETR-L 作为基础模型,在自建表格单元格检测数据集上完成预训练,实现了对有线表格、无线表格均有较好性能的表格单元格检测。 |
| RT-DETR-L_wireless_table_cell_det | 推理模型/训练模型 |
注:以上精度指标测量自 PaddleX 内部自建表格单元格检测数据集。所有模型 GPU 推理耗时基于 NVIDIA Tesla T4 机器,精度类型为 FP32, CPU 推理速度基于 Intel(R) Xeon(R) Gold 5117 CPU @ 2.00GHz,线程数为8,精度类型为 FP32。
## 三、快速集成 > ❗ 在快速集成前,请先安装 PaddleX 的 wheel 包,详细请参考 [PaddleX本地安装教程](../../../installation/installation.md) 完成 wheel 包的安装后,几行代码即可完成表格单元格检测模块的推理,可以任意切换该模块下的模型,您也可以将表格单元格检测的模块中的模型推理集成到您的项目中。运行以下代码前,请您下载[示例图片](https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/table_recognition.jpg)到本地。 ```python from paddlex import create_model model = create_model(model_name="RT-DETR-L_wired_table_cell_det") output = model.predict("table_recognition.jpg", batch_size=1) for res in output: res.print(json_format=False) res.save_to_img("./output/") res.save_to_json("./output/res.json") ```[xmin, ymin, xmax, ymax]
相关方法、参数等说明如下:
* `create_model`实例化表格单元格检测模型(此处以`RT-DETR-L_wired_table_cell_det`为例),具体说明如下:
| 参数 | 参数说明 | 参数类型 | 可选项 | 默认值 |
|---|---|---|---|---|
model_name |
模型名称 | str |
无 | 无 |
model_dir |
模型存储路径 | str |
无 | 无 |
img_size |
输入图像大小;如果不指定,将默认使用PaddleX官方模型配置 | int/list |
|
无 |
threshold |
用于过滤掉低置信度预测结果的阈值;如果不指定,将默认使用PaddleX官方模型配置 | float/dict |
|
无 |
| 参数 | 参数说明 | 参数类型 | 可选项 | 默认值 |
|---|---|---|---|---|
input |
待预测数据,支持多种输入类型 | Python Var/str/dict/list |
|
无 |
batch_size |
批大小 | int |
任意整数 | 1 |
threshold |
用于过滤掉低置信度预测结果的阈值;如果不指定,将默认使用 creat_model 指定的 threshold 参数,如果 creat_model 也没有指定,则默认使用PaddleX官方模型配置 |
float/dict |
|
无 |
| 方法 | 方法说明 | 参数 | 参数类型 | 参数说明 | 默认值 |
|---|---|---|---|---|---|
print() |
打印结果到终端 | format_json |
bool |
是否对输出内容进行使用 JSON 缩进格式化 |
True |
indent |
int |
指定缩进级别,以美化输出的 JSON 数据,使其更具可读性,仅当 format_json 为 True 时有效 |
4 | ||
ensure_ascii |
bool |
控制是否将非 ASCII 字符转义为 Unicode。设置为 True 时,所有非 ASCII 字符将被转义;False 则保留原始字符,仅当format_json为True时有效 |
False |
||
save_to_json() |
将结果保存为json格式的文件 | save_path |
str |
保存的文件路径,当为目录时,保存文件命名与输入文件类型命名一致 | 无 |
indent |
int |
指定缩进级别,以美化输出的 JSON 数据,使其更具可读性,仅当 format_json 为 True 时有效 |
4 | ||
ensure_ascii |
bool |
控制是否将非 ASCII 字符转义为 Unicode。设置为 True 时,所有非 ASCII 字符将被转义;False 则保留原始字符,仅当format_json为True时有效 |
False |
||
save_to_img() |
将结果保存为图像格式的文件 | save_path |
str |
保存的文件路径,当为目录时,保存文件命名与输入文件类型命名一致 | 无 |
| 属性 | 属性说明 |
|---|---|
json |
获取预测的json格式的结果 |
img |
获取格式为dict的可视化图像 |
校验结果文件具体内容为:
"done_flag": true,
"check_pass": true,
"attributes": {
"num_classes": 1,
"train_samples": 230,
"train_sample_paths": [
"check_dataset\/demo_img\/img_45_2.png",
"check_dataset\/demo_img\/img_69_1.png",
"check_dataset\/demo_img\/img_99_1.png",
"check_dataset\/demo_img\/img_6_1.png",
"check_dataset\/demo_img\/img_47_3.png",
"check_dataset\/demo_img\/img_54_2.png",
"check_dataset\/demo_img\/img_25_1.png",
"check_dataset\/demo_img\/img_73_1.png",
"check_dataset\/demo_img\/img_51_2.png",
"check_dataset\/demo_img\/img_93_3.png"
],
"val_samples": 26,
"val_sample_paths": [
"check_dataset\/demo_img\/img_88_2.png",
"check_dataset\/demo_img\/img_156_0.png",
"check_dataset\/demo_img\/img_43_4.png",
"check_dataset\/demo_img\/img_2_4.png",
"check_dataset\/demo_img\/img_42_4.png",
"check_dataset\/demo_img\/img_49_0.png",
"check_dataset\/demo_img\/img_45_1.png",
"check_dataset\/demo_img\/img_140_0.png",
"check_dataset\/demo_img\/img_5_1.png",
"check_dataset\/demo_img\/img_26_3.png"
]
},
"analysis": {
"histogram": "check_dataset\/histogram.png"
},
"dataset_path": "cells_det_coco_examples",
"show_type": "image",
"dataset_type": "COCODetDataset"
上述校验结果中,check_pass 为 true 表示数据集格式符合要求,其他部分指标的说明如下:
attributes.num_classes:该数据集类别数为 1;attributes.train_samples:该数据集训练集样本数量为 230;attributes.val_samples:该数据集验证集样本数量为 26;attributes.train_sample_paths:该数据集训练集样本可视化图片相对路径列表;attributes.val_sample_paths:该数据集验证集样本可视化图片相对路径列表;另外,数据集校验还对数据集中所有类别的样本数量分布情况进行了分析,并绘制了分布直方图(histogram.png):
在您完成数据校验之后,可以通过修改配置文件或是追加超参数的方式对数据集的格式进行转换,也可以对数据集的训练/验证比例进行重新划分。
(1)数据集格式转换
表格单元格检测支持 VOC、LabelMe 格式的数据集转换为 COCO 格式。
数据集校验相关的参数可以通过修改配置文件中 CheckDataset 下的字段进行设置,配置文件中部分参数的示例说明如下:
CheckDataset:convert:enable: 是否进行数据集格式转换,表格单元格检测支持 VOC、LabelMe 格式的数据集转换为 COCO 格式,默认为 False;src_dataset_type: 如果进行数据集格式转换,则需设置源数据集格式,默认为 null,可选值为 VOC、LabelMe 和 VOCWithUnlabeled、LabelMeWithUnlabeled ;
例如,您想转换 LabelMe 格式的数据集为 COCO 格式,以下面的LabelMe 格式的数据集为例,则需要修改配置如下:cd /path/to/paddlex
wget https://paddle-model-ecology.bj.bcebos.com/paddlex/data/det_labelme_examples.tar -P ./dataset
tar -xf ./dataset/det_labelme_examples.tar -C ./dataset/
......
CheckDataset:
......
convert:
enable: True
src_dataset_type: LabelMe
......
随后执行命令:
python main.py -c paddlex/configs/modules/table_cells_detection/RT-DETR-L_wired_table_cell_det.yaml \
-o Global.mode=check_dataset \
-o Global.dataset_dir=./dataset/det_labelme_examples
当然,以上参数同样支持通过追加命令行参数的方式进行设置,以 LabelMe 格式的数据集为例:
python main.py -c paddlex/configs/modules/table_cells_detection/RT-DETR-L_wired_table_cell_det.yaml \
-o Global.mode=check_dataset \
-o Global.dataset_dir=./dataset/det_labelme_examples \
-o CheckDataset.convert.enable=True \
-o CheckDataset.convert.src_dataset_type=LabelMe
(2)数据集划分
数据集划分的参数可以通过修改配置文件中 CheckDataset 下的字段进行设置,配置文件中部分参数的示例说明如下:
CheckDataset:split:enable: 是否进行重新划分数据集,为 True 时进行数据集格式转换,默认为 False;train_percent: 如果重新划分数据集,则需要设置训练集的百分比,类型为0-100之间的任意整数,需要保证和 val_percent 值加和为100;val_percent: 如果重新划分数据集,则需要设置验证集的百分比,类型为0-100之间的任意整数,需要保证和 train_percent 值加和为100;
例如,您想重新划分数据集为 训练集占比90%、验证集占比10%,则需将配置文件修改为:......
CheckDataset:
......
split:
enable: True
train_percent: 90
val_percent: 10
......
随后执行命令:
python main.py -c paddlex/configs/modules/table_cells_detection/RT-DETR-L_wired_table_cell_det.yaml \
-o Global.mode=check_dataset \
-o Global.dataset_dir=./dataset/cells_det_coco_examples
数据划分执行之后,原有标注文件会被在原路径下重命名为 xxx.bak。
以上参数同样支持通过追加命令行参数的方式进行设置:
python main.py -c paddlex/configs/modules/table_cells_detection/RT-DETR-L_wired_table_cell_det.yaml \
-o Global.mode=check_dataset \
-o Global.dataset_dir=./dataset/cells_det_coco_examples \
-o CheckDataset.split.enable=True \
-o CheckDataset.split.train_percent=90 \
-o CheckDataset.split.val_percent=10
一条命令即可完成模型的训练,以此处表格单元格检测模型 RT-DETR-L_wired_table_cell_det 的训练为例:
python main.py -c paddlex/configs/modules/table_cells_detection/RT-DETR-L_wired_table_cell_det.yaml \
-o Global.mode=train \
-o Global.dataset_dir=./dataset/cells_det_coco_examples
需要如下几步:
.yaml 配置文件路径(此处为RT-DETR-L_wired_table_cell_det.yaml,训练其他模型时,需要的指定相应的配置文件,模型和配置的文件的对应关系,可以查阅PaddleX模型列表(CPU/GPU))-o Global.mode=train-o Global.dataset_dir
其他相关参数均可通过修改.yaml配置文件中的Global和Train下的字段来进行设置,也可以通过在命令行中追加参数来进行调整。如指定前 2 卡 gpu 训练:-o Global.device=gpu:0,1;设置训练轮次数为 10:-o Train.epochs_iters=10。更多可修改的参数及其详细解释,可以查阅模型对应任务模块的配置文件说明PaddleX通用模型配置文件参数说明。output,如需指定保存路径,可通过配置文件中 -o Global.output 字段进行设置。在完成模型训练后,所有产出保存在指定的输出目录(默认为./output/)下,通常有以下产出:
train_result.json:训练结果记录文件,记录了训练任务是否正常完成,以及产出的权重指标、相关文件路径等;
train.log:训练日志文件,记录了训练过程中的模型指标变化、loss 变化等;config.yaml:训练配置文件,记录了本次训练的超参数的配置;.pdparams、.pdema、.pdopt.pdstate、.pdiparams、.pdmodel:模型权重相关文件,包括网络参数、优化器、EMA、静态图网络参数、静态图网络结构等;在完成模型训练后,可以对指定的模型权重文件在验证集上进行评估,验证模型精度。使用 PaddleX 进行模型评估,一条命令即可完成模型的评估:
python main.py -c paddlex/configs/modules/table_cells_detection/RT-DETR-L_wired_table_cell_det.yaml \
-o Global.mode=evaluate \
-o Global.dataset_dir=./dataset/cells_det_coco_examples
与模型训练类似,需要如下几步:
.yaml 配置文件路径(此处为RT-DETR-L_wired_table_cell_det.yaml)-o Global.mode=evaluate-o Global.dataset_dir
其他相关参数均可通过修改.yaml配置文件中的Global和Evaluate下的字段来进行设置,详细请参考PaddleX通用模型配置文件参数说明。在模型评估时,需要指定模型权重文件路径,每个配置文件中都内置了默认的权重保存路径,如需要改变,只需要通过追加命令行参数的形式进行设置即可,如-o Evaluate.weight_path=./output/best_model/best_model.pdparams。
在完成模型评估后,会产出evaluate_result.json,其记录了评估的结果,具体来说,记录了评估任务是否正常完成,以及模型的评估指标,包含 AP;
在完成模型的训练和评估后,即可使用训练好的模型权重进行推理预测或者进行Python集成。
通过命令行的方式进行推理预测,只需如下一条命令。运行以下代码前,请您下载示例图片到本地。
python main.py -c paddlex/configs/modules/table_cells_detection/RT-DETR-L_wired_table_cell_det.yaml \
-o Global.mode=predict \
-o Predict.model_dir="./output/best_model/inference" \
-o Predict.input="table_recognition.jpg"
与模型训练和评估类似,需要如下几步:
指定模型的.yaml 配置文件路径(此处为RT-DETR-L_wired_table_cell_det.yaml)
指定模式为模型推理预测:-o Global.mode=predict
指定模型权重路径:-o Predict.model_dir="./output/best_model/inference"
指定输入数据路径:-o Predict.input="..."
其他相关参数均可通过修改.yaml配置文件中的Global和Predict下的字段来进行设置,详细请参考PaddleX通用模型配置文件参数说明。
模型可以直接集成到 PaddleX 产线中,也可以直接集成到您自己的项目中。
1.产线集成
表格单元格检测模块可以集成的PaddleX产线有通用表格识别产线v2,只需要替换模型路径即可完成相关产线的表格单元格检测模块的模型更新。在产线集成中,你可以使用高性能部署和服务化部署来部署你得到的模型。
2.模块集成
您产出的权重可以直接集成到表格单元格检测模块中,可以参考快速集成的 Python 示例代码,只需要将模型替换为你训练的到的模型路径即可。