| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161 |
- # coding: utf8
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- # 选择使用0号卡
- os.environ['CUDA_VISIBLE_DEVICES'] = '0'
- # 使用CPU
- #os.environ['CUDA_VISIBLE_DEVICES'] = ''
- import argparse
- import paddlex as pdx
- from paddlex.seg import transforms
- MODEL_TYPE = ['HumanSegMobile', 'HumanSegServer']
- def parse_args():
- parser = argparse.ArgumentParser(description='HumanSeg training')
- parser.add_argument(
- '--model_type',
- dest='model_type',
- help="Model type for traing, which is one of ('HumanSegMobile', 'HumanSegServer')",
- type=str,
- default='HumanSegMobile')
- parser.add_argument(
- '--data_dir',
- dest='data_dir',
- help='The root directory of dataset',
- type=str)
- parser.add_argument(
- '--train_list',
- dest='train_list',
- help='Train list file of dataset',
- type=str)
- parser.add_argument(
- '--val_list',
- dest='val_list',
- help='Val list file of dataset',
- type=str,
- default=None)
- parser.add_argument(
- '--save_dir',
- dest='save_dir',
- help='The directory for saving the model snapshot',
- type=str,
- default='./output')
- parser.add_argument(
- '--num_classes',
- dest='num_classes',
- help='Number of classes',
- type=int,
- default=2)
- parser.add_argument(
- "--image_shape",
- dest="image_shape",
- help="The image shape for net inputs.",
- nargs=2,
- default=[192, 192],
- type=int)
- parser.add_argument(
- '--num_epochs',
- dest='num_epochs',
- help='Number epochs for training',
- type=int,
- default=100)
- parser.add_argument(
- '--batch_size',
- dest='batch_size',
- help='Mini batch size',
- type=int,
- default=128)
- parser.add_argument(
- '--learning_rate',
- dest='learning_rate',
- help='Learning rate',
- type=float,
- default=0.01)
- parser.add_argument(
- '--pretrain_weights',
- dest='pretrain_weights',
- help='The path of pretrianed weight',
- type=str,
- default=None)
- parser.add_argument(
- '--resume_checkpoint',
- dest='resume_checkpoint',
- help='The path of resume checkpoint',
- type=str,
- default=None)
- parser.add_argument(
- '--use_vdl',
- dest='use_vdl',
- help='Whether to use visualdl',
- action='store_true')
- parser.add_argument(
- '--save_interval_epochs',
- dest='save_interval_epochs',
- help='The interval epochs for save a model snapshot',
- type=int,
- default=5)
- return parser.parse_args()
- def train(args):
- train_transforms = transforms.Compose([
- transforms.Resize(args.image_shape), transforms.RandomHorizontalFlip(),
- transforms.Normalize()
- ])
- eval_transforms = transforms.Compose(
- [transforms.Resize(args.image_shape), transforms.Normalize()])
- train_dataset = pdx.datasets.SegDataset(
- data_dir=args.data_dir,
- file_list=args.train_list,
- transforms=train_transforms,
- shuffle=True)
- eval_dataset = pdx.datasets.SegDataset(
- data_dir=args.data_dir,
- file_list=args.val_list,
- transforms=eval_transforms)
- if args.model_type == 'HumanSegMobile':
- model = pdx.seg.HRNet(
- num_classes=args.num_classes, width='18_small_v1')
- elif args.model_type == 'HumanSegServer':
- model = pdx.seg.DeepLabv3p(
- num_classes=args.num_classes, backbone='Xception65')
- else:
- raise ValueError(
- "--model_type: {} is set wrong, it shold be one of ('HumanSegMobile', "
- "'HumanSegLite', 'HumanSegServer')".format(args.model_type))
- model.train(
- num_epochs=args.num_epochs,
- train_dataset=train_dataset,
- train_batch_size=args.batch_size,
- eval_dataset=eval_dataset,
- save_interval_epochs=args.save_interval_epochs,
- learning_rate=args.learning_rate,
- pretrain_weights=args.pretrain_weights,
- resume_checkpoint=args.resume_checkpoint,
- save_dir=args.save_dir,
- use_vdl=args.use_vdl)
- if __name__ == '__main__':
- args = parse_args()
- train(args)
|