| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import paddle
- from paddlex.ppdet.core.workspace import register, create
- from .meta_arch import BaseArch
- __all__ = ['FairMOT']
- @register
- class FairMOT(BaseArch):
- """
- FairMOT network, see http://arxiv.org/abs/2004.01888
- Args:
- detector (object): 'CenterNet' instance
- reid (object): 'FairMOTEmbeddingHead' instance
- tracker (object): 'JDETracker' instance
- loss (object): 'FairMOTLoss' instance
- """
- __category__ = 'architecture'
- __inject__ = ['loss']
- def __init__(self,
- detector='CenterNet',
- reid='FairMOTEmbeddingHead',
- tracker='JDETracker',
- loss='FairMOTLoss'):
- super(FairMOT, self).__init__()
- self.detector = detector
- self.reid = reid
- self.tracker = tracker
- self.loss = loss
- @classmethod
- def from_config(cls, cfg, *args, **kwargs):
- detector = create(cfg['detector'])
- detector_out_shape = detector.neck and detector.neck.out_shape or detector.backbone.out_shape
- kwargs = {'input_shape': detector_out_shape}
- reid = create(cfg['reid'], **kwargs)
- loss = create(cfg['loss'])
- tracker = create(cfg['tracker'])
- return {
- 'detector': detector,
- 'reid': reid,
- 'loss': loss,
- 'tracker': tracker
- }
- def _forward(self):
- loss = dict()
- # det_outs keys:
- # train: det_loss, heatmap_loss, size_loss, offset_loss, neck_feat
- # eval/infer: bbox, bbox_inds, neck_feat
- det_outs = self.detector(self.inputs)
- neck_feat = det_outs['neck_feat']
- if self.training:
- reid_loss = self.reid(neck_feat, self.inputs)
- det_loss = det_outs['det_loss']
- loss = self.loss(det_loss, reid_loss)
- loss.update({
- 'heatmap_loss': det_outs['heatmap_loss'],
- 'size_loss': det_outs['size_loss'],
- 'offset_loss': det_outs['offset_loss'],
- 'reid_loss': reid_loss
- })
- return loss
- else:
- embedding = self.reid(neck_feat, self.inputs)
- bbox_inds = det_outs['bbox_inds']
- embedding = paddle.transpose(embedding, [0, 2, 3, 1])
- embedding = paddle.reshape(embedding,
- [-1, paddle.shape(embedding)[-1]])
- pred_embs = paddle.gather(embedding, bbox_inds)
- pred_dets = det_outs['bbox']
- return pred_dets, pred_embs
- def get_pred(self):
- output = self._forward()
- return output
- def get_loss(self):
- loss = self._forward()
- return loss
|