| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import numpy as np
- import paddle
- import paddle.nn as nn
- import paddle.nn.functional as F
- from paddle import ParamAttr
- from paddle.nn.initializer import XavierUniform
- from paddle.regularizer import L2Decay
- from paddlex.ppdet.core.workspace import register, serializable
- from paddlex.ppdet.modeling.layers import ConvNormLayer
- from ..shape_spec import ShapeSpec
- __all__ = ['PAN']
- @register
- @serializable
- class PAN(nn.Layer):
- """
- Path Aggregation Network, see https://arxiv.org/abs/1803.01534
- Args:
- in_channels (list[int]): input channels of each level which can be
- derived from the output shape of backbone by from_config
- out_channel (list[int]): output channel of each level
- spatial_scales (list[float]): the spatial scales between input feature
- maps and original input image which can be derived from the output
- shape of backbone by from_config
- start_level (int): Index of the start input backbone level used to
- build the feature pyramid. Default: 0.
- end_level (int): Index of the end input backbone level (exclusive) to
- build the feature pyramid. Default: -1, which means the last level.
- norm_type (string|None): The normalization type in FPN module. If
- norm_type is None, norm will not be used after conv and if
- norm_type is string, bn, gn, sync_bn are available. default None
- """
- def __init__(self,
- in_channels,
- out_channel,
- spatial_scales=[0.125, 0.0625, 0.03125],
- start_level=0,
- end_level=-1,
- norm_type=None):
- super(PAN, self).__init__()
- self.out_channel = out_channel
- self.num_ins = len(in_channels)
- self.spatial_scales = spatial_scales
- if end_level == -1:
- self.end_level = self.num_ins
- else:
- # if end_level < inputs, no extra level is allowed
- self.end_level = end_level
- assert end_level <= len(in_channels)
- self.start_level = start_level
- self.norm_type = norm_type
- self.lateral_convs = []
- for i in range(self.start_level, self.end_level):
- in_c = in_channels[i - self.start_level]
- if self.norm_type is not None:
- lateral = self.add_sublayer(
- 'pan_lateral' + str(i),
- ConvNormLayer(
- ch_in=in_c,
- ch_out=self.out_channel,
- filter_size=1,
- stride=1,
- norm_type=self.norm_type,
- norm_decay=self.norm_decay,
- freeze_norm=self.freeze_norm,
- initializer=XavierUniform(fan_out=in_c)))
- else:
- lateral = self.add_sublayer(
- 'pan_lateral' + str(i),
- nn.Conv2D(
- in_channels=in_c,
- out_channels=self.out_channel,
- kernel_size=1,
- weight_attr=ParamAttr(
- initializer=XavierUniform(fan_out=in_c))))
- self.lateral_convs.append(lateral)
- @classmethod
- def from_config(cls, cfg, input_shape):
- return {'in_channels': [i.channels for i in input_shape], }
- def forward(self, body_feats):
- laterals = []
- for i, lateral_conv in enumerate(self.lateral_convs):
- laterals.append(lateral_conv(body_feats[i + self.start_level]))
- num_levels = len(laterals)
- for i in range(1, num_levels):
- lvl = num_levels - i
- upsample = F.interpolate(
- laterals[lvl],
- scale_factor=2.,
- mode='bilinear', )
- laterals[lvl - 1] += upsample
- outs = [laterals[i] for i in range(num_levels)]
- for i in range(0, num_levels - 1):
- outs[i + 1] += F.interpolate(
- outs[i], scale_factor=0.5, mode='bilinear')
- return outs
- @property
- def out_shape(self):
- return [
- ShapeSpec(
- channels=self.out_channel, stride=1. / s)
- for s in self.spatial_scales
- ]
|