yolo_fpn.py 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988
  1. # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import paddle
  15. import paddle.nn as nn
  16. import paddle.nn.functional as F
  17. from paddlex.ppdet.core.workspace import register, serializable
  18. from paddlex.ppdet.modeling.layers import DropBlock
  19. from ..backbones.darknet import ConvBNLayer
  20. from ..shape_spec import ShapeSpec
  21. __all__ = ['YOLOv3FPN', 'PPYOLOFPN', 'PPYOLOTinyFPN', 'PPYOLOPAN']
  22. def add_coord(x, data_format):
  23. b = paddle.shape(x)[0]
  24. if data_format == 'NCHW':
  25. h, w = x.shape[2], x.shape[3]
  26. else:
  27. h, w = x.shape[1], x.shape[2]
  28. gx = paddle.cast(paddle.arange(w) / ((w - 1.) * 2.0) - 1., x.dtype)
  29. gy = paddle.cast(paddle.arange(h) / ((h - 1.) * 2.0) - 1., x.dtype)
  30. if data_format == 'NCHW':
  31. gx = gx.reshape([1, 1, 1, w]).expand([b, 1, h, w])
  32. gy = gy.reshape([1, 1, h, 1]).expand([b, 1, h, w])
  33. else:
  34. gx = gx.reshape([1, 1, w, 1]).expand([b, h, w, 1])
  35. gy = gy.reshape([1, h, 1, 1]).expand([b, h, w, 1])
  36. gx.stop_gradient = True
  37. gy.stop_gradient = True
  38. return gx, gy
  39. class YoloDetBlock(nn.Layer):
  40. def __init__(self,
  41. ch_in,
  42. channel,
  43. norm_type,
  44. freeze_norm=False,
  45. name='',
  46. data_format='NCHW'):
  47. """
  48. YOLODetBlock layer for yolov3, see https://arxiv.org/abs/1804.02767
  49. Args:
  50. ch_in (int): input channel
  51. channel (int): base channel
  52. norm_type (str): batch norm type
  53. freeze_norm (bool): whether to freeze norm, default False
  54. name (str): layer name
  55. data_format (str): data format, NCHW or NHWC
  56. """
  57. super(YoloDetBlock, self).__init__()
  58. self.ch_in = ch_in
  59. self.channel = channel
  60. assert channel % 2 == 0, \
  61. "channel {} cannot be divided by 2".format(channel)
  62. conv_def = [
  63. ['conv0', ch_in, channel, 1, '.0.0'],
  64. ['conv1', channel, channel * 2, 3, '.0.1'],
  65. ['conv2', channel * 2, channel, 1, '.1.0'],
  66. ['conv3', channel, channel * 2, 3, '.1.1'],
  67. ['route', channel * 2, channel, 1, '.2'],
  68. ]
  69. self.conv_module = nn.Sequential()
  70. for idx, (conv_name, ch_in, ch_out, filter_size,
  71. post_name) in enumerate(conv_def):
  72. self.conv_module.add_sublayer(
  73. conv_name,
  74. ConvBNLayer(
  75. ch_in=ch_in,
  76. ch_out=ch_out,
  77. filter_size=filter_size,
  78. padding=(filter_size - 1) // 2,
  79. norm_type=norm_type,
  80. freeze_norm=freeze_norm,
  81. data_format=data_format,
  82. name=name + post_name))
  83. self.tip = ConvBNLayer(
  84. ch_in=channel,
  85. ch_out=channel * 2,
  86. filter_size=3,
  87. padding=1,
  88. norm_type=norm_type,
  89. freeze_norm=freeze_norm,
  90. data_format=data_format,
  91. name=name + '.tip')
  92. def forward(self, inputs):
  93. route = self.conv_module(inputs)
  94. tip = self.tip(route)
  95. return route, tip
  96. class SPP(nn.Layer):
  97. def __init__(self,
  98. ch_in,
  99. ch_out,
  100. k,
  101. pool_size,
  102. norm_type,
  103. freeze_norm=False,
  104. name='',
  105. act='leaky',
  106. data_format='NCHW'):
  107. """
  108. SPP layer, which consist of four pooling layer follwed by conv layer
  109. Args:
  110. ch_in (int): input channel of conv layer
  111. ch_out (int): output channel of conv layer
  112. k (int): kernel size of conv layer
  113. norm_type (str): batch norm type
  114. freeze_norm (bool): whether to freeze norm, default False
  115. name (str): layer name
  116. act (str): activation function
  117. data_format (str): data format, NCHW or NHWC
  118. """
  119. super(SPP, self).__init__()
  120. self.pool = []
  121. self.data_format = data_format
  122. for size in pool_size:
  123. pool = self.add_sublayer(
  124. '{}.pool1'.format(name),
  125. nn.MaxPool2D(
  126. kernel_size=size,
  127. stride=1,
  128. padding=size // 2,
  129. data_format=data_format,
  130. ceil_mode=False))
  131. self.pool.append(pool)
  132. self.conv = ConvBNLayer(
  133. ch_in,
  134. ch_out,
  135. k,
  136. padding=k // 2,
  137. norm_type=norm_type,
  138. freeze_norm=freeze_norm,
  139. name=name,
  140. act=act,
  141. data_format=data_format)
  142. def forward(self, x):
  143. outs = [x]
  144. for pool in self.pool:
  145. outs.append(pool(x))
  146. if self.data_format == "NCHW":
  147. y = paddle.concat(outs, axis=1)
  148. else:
  149. y = paddle.concat(outs, axis=-1)
  150. y = self.conv(y)
  151. return y
  152. class CoordConv(nn.Layer):
  153. def __init__(self,
  154. ch_in,
  155. ch_out,
  156. filter_size,
  157. padding,
  158. norm_type,
  159. freeze_norm=False,
  160. name='',
  161. data_format='NCHW'):
  162. """
  163. CoordConv layer
  164. Args:
  165. ch_in (int): input channel
  166. ch_out (int): output channel
  167. filter_size (int): filter size, default 3
  168. padding (int): padding size, default 0
  169. norm_type (str): batch norm type, default bn
  170. name (str): layer name
  171. data_format (str): data format, NCHW or NHWC
  172. """
  173. super(CoordConv, self).__init__()
  174. self.conv = ConvBNLayer(
  175. ch_in + 2,
  176. ch_out,
  177. filter_size=filter_size,
  178. padding=padding,
  179. norm_type=norm_type,
  180. freeze_norm=freeze_norm,
  181. data_format=data_format,
  182. name=name)
  183. self.data_format = data_format
  184. def forward(self, x):
  185. gx, gy = add_coord(x, self.data_format)
  186. if self.data_format == 'NCHW':
  187. y = paddle.concat([x, gx, gy], axis=1)
  188. else:
  189. y = paddle.concat([x, gx, gy], axis=-1)
  190. y = self.conv(y)
  191. return y
  192. class PPYOLODetBlock(nn.Layer):
  193. def __init__(self, cfg, name, data_format='NCHW'):
  194. """
  195. PPYOLODetBlock layer
  196. Args:
  197. cfg (list): layer configs for this block
  198. name (str): block name
  199. data_format (str): data format, NCHW or NHWC
  200. """
  201. super(PPYOLODetBlock, self).__init__()
  202. self.conv_module = nn.Sequential()
  203. for idx, (conv_name, layer, args, kwargs) in enumerate(cfg[:-1]):
  204. kwargs.update(
  205. name='{}.{}'.format(name, conv_name), data_format=data_format)
  206. self.conv_module.add_sublayer(conv_name, layer(*args, **kwargs))
  207. conv_name, layer, args, kwargs = cfg[-1]
  208. kwargs.update(
  209. name='{}.{}'.format(name, conv_name), data_format=data_format)
  210. self.tip = layer(*args, **kwargs)
  211. def forward(self, inputs):
  212. route = self.conv_module(inputs)
  213. tip = self.tip(route)
  214. return route, tip
  215. class PPYOLOTinyDetBlock(nn.Layer):
  216. def __init__(self,
  217. ch_in,
  218. ch_out,
  219. name,
  220. drop_block=False,
  221. block_size=3,
  222. keep_prob=0.9,
  223. data_format='NCHW'):
  224. """
  225. PPYOLO Tiny DetBlock layer
  226. Args:
  227. ch_in (list): input channel number
  228. ch_out (list): output channel number
  229. name (str): block name
  230. drop_block: whether user DropBlock
  231. block_size: drop block size
  232. keep_prob: probability to keep block in DropBlock
  233. data_format (str): data format, NCHW or NHWC
  234. """
  235. super(PPYOLOTinyDetBlock, self).__init__()
  236. self.drop_block_ = drop_block
  237. self.conv_module = nn.Sequential()
  238. cfgs = [
  239. # name, in channels, out channels, filter_size,
  240. # stride, padding, groups
  241. ['.0', ch_in, ch_out, 1, 1, 0, 1],
  242. ['.1', ch_out, ch_out, 5, 1, 2, ch_out],
  243. ['.2', ch_out, ch_out, 1, 1, 0, 1],
  244. ['.route', ch_out, ch_out, 5, 1, 2, ch_out],
  245. ]
  246. for cfg in cfgs:
  247. conv_name, conv_ch_in, conv_ch_out, filter_size, stride, padding, \
  248. groups = cfg
  249. self.conv_module.add_sublayer(
  250. name + conv_name,
  251. ConvBNLayer(
  252. ch_in=conv_ch_in,
  253. ch_out=conv_ch_out,
  254. filter_size=filter_size,
  255. stride=stride,
  256. padding=padding,
  257. groups=groups,
  258. name=name + conv_name))
  259. self.tip = ConvBNLayer(
  260. ch_in=ch_out,
  261. ch_out=ch_out,
  262. filter_size=1,
  263. stride=1,
  264. padding=0,
  265. groups=1,
  266. name=name + conv_name)
  267. if self.drop_block_:
  268. self.drop_block = DropBlock(
  269. block_size=block_size,
  270. keep_prob=keep_prob,
  271. data_format=data_format,
  272. name=name + '.dropblock')
  273. def forward(self, inputs):
  274. if self.drop_block_:
  275. inputs = self.drop_block(inputs)
  276. route = self.conv_module(inputs)
  277. tip = self.tip(route)
  278. return route, tip
  279. class PPYOLODetBlockCSP(nn.Layer):
  280. def __init__(self,
  281. cfg,
  282. ch_in,
  283. ch_out,
  284. act,
  285. norm_type,
  286. name,
  287. data_format='NCHW'):
  288. """
  289. PPYOLODetBlockCSP layer
  290. Args:
  291. cfg (list): layer configs for this block
  292. ch_in (int): input channel
  293. ch_out (int): output channel
  294. act (str): default mish
  295. name (str): block name
  296. data_format (str): data format, NCHW or NHWC
  297. """
  298. super(PPYOLODetBlockCSP, self).__init__()
  299. self.data_format = data_format
  300. self.conv1 = ConvBNLayer(
  301. ch_in,
  302. ch_out,
  303. 1,
  304. padding=0,
  305. act=act,
  306. norm_type=norm_type,
  307. name=name + '.left',
  308. data_format=data_format)
  309. self.conv2 = ConvBNLayer(
  310. ch_in,
  311. ch_out,
  312. 1,
  313. padding=0,
  314. act=act,
  315. norm_type=norm_type,
  316. name=name + '.right',
  317. data_format=data_format)
  318. self.conv3 = ConvBNLayer(
  319. ch_out * 2,
  320. ch_out * 2,
  321. 1,
  322. padding=0,
  323. act=act,
  324. norm_type=norm_type,
  325. name=name,
  326. data_format=data_format)
  327. self.conv_module = nn.Sequential()
  328. for idx, (layer_name, layer, args, kwargs) in enumerate(cfg):
  329. kwargs.update(name=name + layer_name, data_format=data_format)
  330. self.conv_module.add_sublayer(layer_name, layer(*args, **kwargs))
  331. def forward(self, inputs):
  332. conv_left = self.conv1(inputs)
  333. conv_right = self.conv2(inputs)
  334. conv_left = self.conv_module(conv_left)
  335. if self.data_format == 'NCHW':
  336. conv = paddle.concat([conv_left, conv_right], axis=1)
  337. else:
  338. conv = paddle.concat([conv_left, conv_right], axis=-1)
  339. conv = self.conv3(conv)
  340. return conv, conv
  341. @register
  342. @serializable
  343. class YOLOv3FPN(nn.Layer):
  344. __shared__ = ['norm_type', 'data_format']
  345. def __init__(self,
  346. in_channels=[256, 512, 1024],
  347. norm_type='bn',
  348. freeze_norm=False,
  349. data_format='NCHW'):
  350. """
  351. YOLOv3FPN layer
  352. Args:
  353. in_channels (list): input channels for fpn
  354. norm_type (str): batch norm type, default bn
  355. data_format (str): data format, NCHW or NHWC
  356. """
  357. super(YOLOv3FPN, self).__init__()
  358. assert len(in_channels) > 0, "in_channels length should > 0"
  359. self.in_channels = in_channels
  360. self.num_blocks = len(in_channels)
  361. self._out_channels = []
  362. self.yolo_blocks = []
  363. self.routes = []
  364. self.data_format = data_format
  365. for i in range(self.num_blocks):
  366. name = 'yolo_block.{}'.format(i)
  367. in_channel = in_channels[-i - 1]
  368. if i > 0:
  369. in_channel += 512 // (2**i)
  370. yolo_block = self.add_sublayer(
  371. name,
  372. YoloDetBlock(
  373. in_channel,
  374. channel=512 // (2**i),
  375. norm_type=norm_type,
  376. freeze_norm=freeze_norm,
  377. data_format=data_format,
  378. name=name))
  379. self.yolo_blocks.append(yolo_block)
  380. # tip layer output channel doubled
  381. self._out_channels.append(1024 // (2**i))
  382. if i < self.num_blocks - 1:
  383. name = 'yolo_transition.{}'.format(i)
  384. route = self.add_sublayer(
  385. name,
  386. ConvBNLayer(
  387. ch_in=512 // (2**i),
  388. ch_out=256 // (2**i),
  389. filter_size=1,
  390. stride=1,
  391. padding=0,
  392. norm_type=norm_type,
  393. freeze_norm=freeze_norm,
  394. data_format=data_format,
  395. name=name))
  396. self.routes.append(route)
  397. def forward(self, blocks, for_mot=False):
  398. assert len(blocks) == self.num_blocks
  399. blocks = blocks[::-1]
  400. yolo_feats = []
  401. # add embedding features output for multi-object tracking model
  402. if for_mot:
  403. emb_feats = []
  404. for i, block in enumerate(blocks):
  405. if i > 0:
  406. if self.data_format == 'NCHW':
  407. block = paddle.concat([route, block], axis=1)
  408. else:
  409. block = paddle.concat([route, block], axis=-1)
  410. route, tip = self.yolo_blocks[i](block)
  411. yolo_feats.append(tip)
  412. if for_mot:
  413. # add embedding features output
  414. emb_feats.append(route)
  415. if i < self.num_blocks - 1:
  416. route = self.routes[i](route)
  417. route = F.interpolate(
  418. route, scale_factor=2., data_format=self.data_format)
  419. if for_mot:
  420. return {'yolo_feats': yolo_feats, 'emb_feats': emb_feats}
  421. else:
  422. return yolo_feats
  423. @classmethod
  424. def from_config(cls, cfg, input_shape):
  425. return {'in_channels': [i.channels for i in input_shape], }
  426. @property
  427. def out_shape(self):
  428. return [ShapeSpec(channels=c) for c in self._out_channels]
  429. @register
  430. @serializable
  431. class PPYOLOFPN(nn.Layer):
  432. __shared__ = ['norm_type', 'data_format']
  433. def __init__(self,
  434. in_channels=[512, 1024, 2048],
  435. norm_type='bn',
  436. freeze_norm=False,
  437. data_format='NCHW',
  438. coord_conv=False,
  439. conv_block_num=2,
  440. drop_block=False,
  441. block_size=3,
  442. keep_prob=0.9,
  443. spp=False):
  444. """
  445. PPYOLOFPN layer
  446. Args:
  447. in_channels (list): input channels for fpn
  448. norm_type (str): batch norm type, default bn
  449. data_format (str): data format, NCHW or NHWC
  450. coord_conv (bool): whether use CoordConv or not
  451. conv_block_num (int): conv block num of each pan block
  452. drop_block (bool): whether use DropBlock or not
  453. block_size (int): block size of DropBlock
  454. keep_prob (float): keep probability of DropBlock
  455. spp (bool): whether use spp or not
  456. """
  457. super(PPYOLOFPN, self).__init__()
  458. assert len(in_channels) > 0, "in_channels length should > 0"
  459. self.in_channels = in_channels
  460. self.num_blocks = len(in_channels)
  461. # parse kwargs
  462. self.coord_conv = coord_conv
  463. self.drop_block = drop_block
  464. self.block_size = block_size
  465. self.keep_prob = keep_prob
  466. self.spp = spp
  467. self.conv_block_num = conv_block_num
  468. self.data_format = data_format
  469. if self.coord_conv:
  470. ConvLayer = CoordConv
  471. else:
  472. ConvLayer = ConvBNLayer
  473. if self.drop_block:
  474. dropblock_cfg = [[
  475. 'dropblock', DropBlock, [self.block_size, self.keep_prob],
  476. dict()
  477. ]]
  478. else:
  479. dropblock_cfg = []
  480. self._out_channels = []
  481. self.yolo_blocks = []
  482. self.routes = []
  483. for i, ch_in in enumerate(self.in_channels[::-1]):
  484. if i > 0:
  485. ch_in += 512 // (2**i)
  486. channel = 64 * (2**self.num_blocks) // (2**i)
  487. base_cfg = []
  488. c_in, c_out = ch_in, channel
  489. for j in range(self.conv_block_num):
  490. base_cfg += [
  491. [
  492. 'conv{}'.format(2 * j), ConvLayer, [c_in, c_out, 1],
  493. dict(
  494. padding=0,
  495. norm_type=norm_type,
  496. freeze_norm=freeze_norm)
  497. ],
  498. [
  499. 'conv{}'.format(2 * j + 1), ConvBNLayer,
  500. [c_out, c_out * 2, 3], dict(
  501. padding=1,
  502. norm_type=norm_type,
  503. freeze_norm=freeze_norm)
  504. ],
  505. ]
  506. c_in, c_out = c_out * 2, c_out
  507. base_cfg += [[
  508. 'route', ConvLayer, [c_in, c_out, 1], dict(
  509. padding=0, norm_type=norm_type, freeze_norm=freeze_norm)
  510. ], [
  511. 'tip', ConvLayer, [c_out, c_out * 2, 3], dict(
  512. padding=1, norm_type=norm_type, freeze_norm=freeze_norm)
  513. ]]
  514. if self.conv_block_num == 2:
  515. if i == 0:
  516. if self.spp:
  517. spp_cfg = [[
  518. 'spp', SPP, [channel * 4, channel, 1], dict(
  519. pool_size=[5, 9, 13],
  520. norm_type=norm_type,
  521. freeze_norm=freeze_norm)
  522. ]]
  523. else:
  524. spp_cfg = []
  525. cfg = base_cfg[0:3] + spp_cfg + base_cfg[
  526. 3:4] + dropblock_cfg + base_cfg[4:6]
  527. else:
  528. cfg = base_cfg[0:2] + dropblock_cfg + base_cfg[2:6]
  529. elif self.conv_block_num == 0:
  530. if self.spp and i == 0:
  531. spp_cfg = [[
  532. 'spp', SPP, [c_in * 4, c_in, 1], dict(
  533. pool_size=[5, 9, 13],
  534. norm_type=norm_type,
  535. freeze_norm=freeze_norm)
  536. ]]
  537. else:
  538. spp_cfg = []
  539. cfg = spp_cfg + dropblock_cfg + base_cfg
  540. name = 'yolo_block.{}'.format(i)
  541. yolo_block = self.add_sublayer(name, PPYOLODetBlock(cfg, name))
  542. self.yolo_blocks.append(yolo_block)
  543. self._out_channels.append(channel * 2)
  544. if i < self.num_blocks - 1:
  545. name = 'yolo_transition.{}'.format(i)
  546. route = self.add_sublayer(
  547. name,
  548. ConvBNLayer(
  549. ch_in=channel,
  550. ch_out=256 // (2**i),
  551. filter_size=1,
  552. stride=1,
  553. padding=0,
  554. norm_type=norm_type,
  555. freeze_norm=freeze_norm,
  556. data_format=data_format,
  557. name=name))
  558. self.routes.append(route)
  559. def forward(self, blocks, for_mot=False):
  560. assert len(blocks) == self.num_blocks
  561. blocks = blocks[::-1]
  562. yolo_feats = []
  563. # add embedding features output for multi-object tracking model
  564. if for_mot:
  565. emb_feats = []
  566. for i, block in enumerate(blocks):
  567. if i > 0:
  568. if self.data_format == 'NCHW':
  569. block = paddle.concat([route, block], axis=1)
  570. else:
  571. block = paddle.concat([route, block], axis=-1)
  572. route, tip = self.yolo_blocks[i](block)
  573. yolo_feats.append(tip)
  574. if for_mot:
  575. # add embedding features output
  576. emb_feats.append(route)
  577. if i < self.num_blocks - 1:
  578. route = self.routes[i](route)
  579. route = F.interpolate(
  580. route, scale_factor=2., data_format=self.data_format)
  581. if for_mot:
  582. return {'yolo_feats': yolo_feats, 'emb_feats': emb_feats}
  583. else:
  584. return yolo_feats
  585. @classmethod
  586. def from_config(cls, cfg, input_shape):
  587. return {'in_channels': [i.channels for i in input_shape], }
  588. @property
  589. def out_shape(self):
  590. return [ShapeSpec(channels=c) for c in self._out_channels]
  591. @register
  592. @serializable
  593. class PPYOLOTinyFPN(nn.Layer):
  594. __shared__ = ['norm_type', 'data_format']
  595. def __init__(self,
  596. in_channels=[80, 56, 34],
  597. detection_block_channels=[160, 128, 96],
  598. norm_type='bn',
  599. data_format='NCHW',
  600. **kwargs):
  601. """
  602. PPYOLO Tiny FPN layer
  603. Args:
  604. in_channels (list): input channels for fpn
  605. detection_block_channels (list): channels in fpn
  606. norm_type (str): batch norm type, default bn
  607. data_format (str): data format, NCHW or NHWC
  608. kwargs: extra key-value pairs, such as parameter of DropBlock and spp
  609. """
  610. super(PPYOLOTinyFPN, self).__init__()
  611. assert len(in_channels) > 0, "in_channels length should > 0"
  612. self.in_channels = in_channels[::-1]
  613. assert len(detection_block_channels
  614. ) > 0, "detection_block_channelslength should > 0"
  615. self.detection_block_channels = detection_block_channels
  616. self.data_format = data_format
  617. self.num_blocks = len(in_channels)
  618. # parse kwargs
  619. self.drop_block = kwargs.get('drop_block', False)
  620. self.block_size = kwargs.get('block_size', 3)
  621. self.keep_prob = kwargs.get('keep_prob', 0.9)
  622. self.spp_ = kwargs.get('spp', False)
  623. if self.spp_:
  624. self.spp = SPP(self.in_channels[0] * 4,
  625. self.in_channels[0],
  626. k=1,
  627. pool_size=[5, 9, 13],
  628. norm_type=norm_type,
  629. name='spp')
  630. self._out_channels = []
  631. self.yolo_blocks = []
  632. self.routes = []
  633. for i, (
  634. ch_in, ch_out
  635. ) in enumerate(zip(self.in_channels, self.detection_block_channels)):
  636. name = 'yolo_block.{}'.format(i)
  637. if i > 0:
  638. ch_in += self.detection_block_channels[i - 1]
  639. yolo_block = self.add_sublayer(
  640. name,
  641. PPYOLOTinyDetBlock(
  642. ch_in,
  643. ch_out,
  644. name,
  645. drop_block=self.drop_block,
  646. block_size=self.block_size,
  647. keep_prob=self.keep_prob))
  648. self.yolo_blocks.append(yolo_block)
  649. self._out_channels.append(ch_out)
  650. if i < self.num_blocks - 1:
  651. name = 'yolo_transition.{}'.format(i)
  652. route = self.add_sublayer(
  653. name,
  654. ConvBNLayer(
  655. ch_in=ch_out,
  656. ch_out=ch_out,
  657. filter_size=1,
  658. stride=1,
  659. padding=0,
  660. norm_type=norm_type,
  661. data_format=data_format,
  662. name=name))
  663. self.routes.append(route)
  664. def forward(self, blocks, for_mot=False):
  665. assert len(blocks) == self.num_blocks
  666. blocks = blocks[::-1]
  667. yolo_feats = []
  668. # add embedding features output for multi-object tracking model
  669. if for_mot:
  670. emb_feats = []
  671. for i, block in enumerate(blocks):
  672. if i == 0 and self.spp_:
  673. block = self.spp(block)
  674. if i > 0:
  675. if self.data_format == 'NCHW':
  676. block = paddle.concat([route, block], axis=1)
  677. else:
  678. block = paddle.concat([route, block], axis=-1)
  679. route, tip = self.yolo_blocks[i](block)
  680. yolo_feats.append(tip)
  681. if for_mot:
  682. # add embedding features output
  683. emb_feats.append(route)
  684. if i < self.num_blocks - 1:
  685. route = self.routes[i](route)
  686. route = F.interpolate(
  687. route, scale_factor=2., data_format=self.data_format)
  688. if for_mot:
  689. return {'yolo_feats': yolo_feats, 'emb_feats': emb_feats}
  690. else:
  691. return yolo_feats
  692. @classmethod
  693. def from_config(cls, cfg, input_shape):
  694. return {'in_channels': [i.channels for i in input_shape], }
  695. @property
  696. def out_shape(self):
  697. return [ShapeSpec(channels=c) for c in self._out_channels]
  698. @register
  699. @serializable
  700. class PPYOLOPAN(nn.Layer):
  701. __shared__ = ['norm_type', 'data_format']
  702. def __init__(self,
  703. in_channels=[512, 1024, 2048],
  704. norm_type='bn',
  705. data_format='NCHW',
  706. act='mish',
  707. conv_block_num=3,
  708. drop_block=False,
  709. block_size=3,
  710. keep_prob=0.9,
  711. spp=False):
  712. """
  713. PPYOLOPAN layer with SPP, DropBlock and CSP connection.
  714. Args:
  715. in_channels (list): input channels for fpn
  716. norm_type (str): batch norm type, default bn
  717. data_format (str): data format, NCHW or NHWC
  718. act (str): activation function, default mish
  719. conv_block_num (int): conv block num of each pan block
  720. drop_block (bool): whether use DropBlock or not
  721. block_size (int): block size of DropBlock
  722. keep_prob (float): keep probability of DropBlock
  723. spp (bool): whether use spp or not
  724. """
  725. super(PPYOLOPAN, self).__init__()
  726. assert len(in_channels) > 0, "in_channels length should > 0"
  727. self.in_channels = in_channels
  728. self.num_blocks = len(in_channels)
  729. # parse kwargs
  730. self.drop_block = drop_block
  731. self.block_size = block_size
  732. self.keep_prob = keep_prob
  733. self.spp = spp
  734. self.conv_block_num = conv_block_num
  735. self.data_format = data_format
  736. if self.drop_block:
  737. dropblock_cfg = [[
  738. 'dropblock', DropBlock, [self.block_size, self.keep_prob],
  739. dict()
  740. ]]
  741. else:
  742. dropblock_cfg = []
  743. # fpn
  744. self.fpn_blocks = []
  745. self.fpn_routes = []
  746. fpn_channels = []
  747. for i, ch_in in enumerate(self.in_channels[::-1]):
  748. if i > 0:
  749. ch_in += 512 // (2**(i - 1))
  750. channel = 512 // (2**i)
  751. base_cfg = []
  752. for j in range(self.conv_block_num):
  753. base_cfg += [
  754. # name, layer, args
  755. [
  756. '{}.0'.format(j), ConvBNLayer, [channel, channel, 1],
  757. dict(
  758. padding=0, act=act, norm_type=norm_type)
  759. ],
  760. [
  761. '{}.1'.format(j), ConvBNLayer, [channel, channel, 3],
  762. dict(
  763. padding=1, act=act, norm_type=norm_type)
  764. ]
  765. ]
  766. if i == 0 and self.spp:
  767. base_cfg[3] = [
  768. 'spp', SPP, [channel * 4, channel, 1], dict(
  769. pool_size=[5, 9, 13], act=act, norm_type=norm_type)
  770. ]
  771. cfg = base_cfg[:4] + dropblock_cfg + base_cfg[4:]
  772. name = 'fpn.{}'.format(i)
  773. fpn_block = self.add_sublayer(
  774. name,
  775. PPYOLODetBlockCSP(cfg, ch_in, channel, act, norm_type, name,
  776. data_format))
  777. self.fpn_blocks.append(fpn_block)
  778. fpn_channels.append(channel * 2)
  779. if i < self.num_blocks - 1:
  780. name = 'fpn_transition.{}'.format(i)
  781. route = self.add_sublayer(
  782. name,
  783. ConvBNLayer(
  784. ch_in=channel * 2,
  785. ch_out=channel,
  786. filter_size=1,
  787. stride=1,
  788. padding=0,
  789. act=act,
  790. norm_type=norm_type,
  791. data_format=data_format,
  792. name=name))
  793. self.fpn_routes.append(route)
  794. # pan
  795. self.pan_blocks = []
  796. self.pan_routes = []
  797. self._out_channels = [512 // (2**(self.num_blocks - 2)), ]
  798. for i in reversed(range(self.num_blocks - 1)):
  799. name = 'pan_transition.{}'.format(i)
  800. route = self.add_sublayer(
  801. name,
  802. ConvBNLayer(
  803. ch_in=fpn_channels[i + 1],
  804. ch_out=fpn_channels[i + 1],
  805. filter_size=3,
  806. stride=2,
  807. padding=1,
  808. act=act,
  809. norm_type=norm_type,
  810. data_format=data_format,
  811. name=name))
  812. self.pan_routes = [route, ] + self.pan_routes
  813. base_cfg = []
  814. ch_in = fpn_channels[i] + fpn_channels[i + 1]
  815. channel = 512 // (2**i)
  816. for j in range(self.conv_block_num):
  817. base_cfg += [
  818. # name, layer, args
  819. [
  820. '{}.0'.format(j), ConvBNLayer, [channel, channel, 1],
  821. dict(
  822. padding=0, act=act, norm_type=norm_type)
  823. ],
  824. [
  825. '{}.1'.format(j), ConvBNLayer, [channel, channel, 3],
  826. dict(
  827. padding=1, act=act, norm_type=norm_type)
  828. ]
  829. ]
  830. cfg = base_cfg[:4] + dropblock_cfg + base_cfg[4:]
  831. name = 'pan.{}'.format(i)
  832. pan_block = self.add_sublayer(
  833. name,
  834. PPYOLODetBlockCSP(cfg, ch_in, channel, act, norm_type, name,
  835. data_format))
  836. self.pan_blocks = [pan_block, ] + self.pan_blocks
  837. self._out_channels.append(channel * 2)
  838. self._out_channels = self._out_channels[::-1]
  839. def forward(self, blocks, for_mot=False):
  840. assert len(blocks) == self.num_blocks
  841. blocks = blocks[::-1]
  842. fpn_feats = []
  843. # add embedding features output for multi-object tracking model
  844. if for_mot:
  845. emb_feats = []
  846. for i, block in enumerate(blocks):
  847. if i > 0:
  848. if self.data_format == 'NCHW':
  849. block = paddle.concat([route, block], axis=1)
  850. else:
  851. block = paddle.concat([route, block], axis=-1)
  852. route, tip = self.fpn_blocks[i](block)
  853. fpn_feats.append(tip)
  854. if for_mot:
  855. # add embedding features output
  856. emb_feats.append(route)
  857. if i < self.num_blocks - 1:
  858. route = self.fpn_routes[i](route)
  859. route = F.interpolate(
  860. route, scale_factor=2., data_format=self.data_format)
  861. pan_feats = [fpn_feats[-1], ]
  862. route = fpn_feats[self.num_blocks - 1]
  863. for i in reversed(range(self.num_blocks - 1)):
  864. block = fpn_feats[i]
  865. route = self.pan_routes[i](route)
  866. if self.data_format == 'NCHW':
  867. block = paddle.concat([route, block], axis=1)
  868. else:
  869. block = paddle.concat([route, block], axis=-1)
  870. route, tip = self.pan_blocks[i](block)
  871. pan_feats.append(tip)
  872. if for_mot:
  873. return {'yolo_feats': pan_feats[::-1], 'emb_feats': emb_feats}
  874. else:
  875. return pan_feats[::-1]
  876. @classmethod
  877. def from_config(cls, cfg, input_shape):
  878. return {'in_channels': [i.channels for i in input_shape], }
  879. @property
  880. def out_shape(self):
  881. return [ShapeSpec(channels=c) for c in self._out_channels]