| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import paddle
- import paddle.nn as nn
- import paddle.nn.functional as F
- from paddlex.ppdet.core.workspace import register, serializable
- from paddlex.ppdet.modeling.layers import DropBlock
- from ..backbones.darknet import ConvBNLayer
- from ..shape_spec import ShapeSpec
- __all__ = ['YOLOv3FPN', 'PPYOLOFPN', 'PPYOLOTinyFPN', 'PPYOLOPAN']
- def add_coord(x, data_format):
- b = paddle.shape(x)[0]
- if data_format == 'NCHW':
- h, w = x.shape[2], x.shape[3]
- else:
- h, w = x.shape[1], x.shape[2]
- gx = paddle.cast(paddle.arange(w) / ((w - 1.) * 2.0) - 1., x.dtype)
- gy = paddle.cast(paddle.arange(h) / ((h - 1.) * 2.0) - 1., x.dtype)
- if data_format == 'NCHW':
- gx = gx.reshape([1, 1, 1, w]).expand([b, 1, h, w])
- gy = gy.reshape([1, 1, h, 1]).expand([b, 1, h, w])
- else:
- gx = gx.reshape([1, 1, w, 1]).expand([b, h, w, 1])
- gy = gy.reshape([1, h, 1, 1]).expand([b, h, w, 1])
- gx.stop_gradient = True
- gy.stop_gradient = True
- return gx, gy
- class YoloDetBlock(nn.Layer):
- def __init__(self,
- ch_in,
- channel,
- norm_type,
- freeze_norm=False,
- name='',
- data_format='NCHW'):
- """
- YOLODetBlock layer for yolov3, see https://arxiv.org/abs/1804.02767
- Args:
- ch_in (int): input channel
- channel (int): base channel
- norm_type (str): batch norm type
- freeze_norm (bool): whether to freeze norm, default False
- name (str): layer name
- data_format (str): data format, NCHW or NHWC
- """
- super(YoloDetBlock, self).__init__()
- self.ch_in = ch_in
- self.channel = channel
- assert channel % 2 == 0, \
- "channel {} cannot be divided by 2".format(channel)
- conv_def = [
- ['conv0', ch_in, channel, 1, '.0.0'],
- ['conv1', channel, channel * 2, 3, '.0.1'],
- ['conv2', channel * 2, channel, 1, '.1.0'],
- ['conv3', channel, channel * 2, 3, '.1.1'],
- ['route', channel * 2, channel, 1, '.2'],
- ]
- self.conv_module = nn.Sequential()
- for idx, (conv_name, ch_in, ch_out, filter_size,
- post_name) in enumerate(conv_def):
- self.conv_module.add_sublayer(
- conv_name,
- ConvBNLayer(
- ch_in=ch_in,
- ch_out=ch_out,
- filter_size=filter_size,
- padding=(filter_size - 1) // 2,
- norm_type=norm_type,
- freeze_norm=freeze_norm,
- data_format=data_format,
- name=name + post_name))
- self.tip = ConvBNLayer(
- ch_in=channel,
- ch_out=channel * 2,
- filter_size=3,
- padding=1,
- norm_type=norm_type,
- freeze_norm=freeze_norm,
- data_format=data_format,
- name=name + '.tip')
- def forward(self, inputs):
- route = self.conv_module(inputs)
- tip = self.tip(route)
- return route, tip
- class SPP(nn.Layer):
- def __init__(self,
- ch_in,
- ch_out,
- k,
- pool_size,
- norm_type,
- freeze_norm=False,
- name='',
- act='leaky',
- data_format='NCHW'):
- """
- SPP layer, which consist of four pooling layer follwed by conv layer
- Args:
- ch_in (int): input channel of conv layer
- ch_out (int): output channel of conv layer
- k (int): kernel size of conv layer
- norm_type (str): batch norm type
- freeze_norm (bool): whether to freeze norm, default False
- name (str): layer name
- act (str): activation function
- data_format (str): data format, NCHW or NHWC
- """
- super(SPP, self).__init__()
- self.pool = []
- self.data_format = data_format
- for size in pool_size:
- pool = self.add_sublayer(
- '{}.pool1'.format(name),
- nn.MaxPool2D(
- kernel_size=size,
- stride=1,
- padding=size // 2,
- data_format=data_format,
- ceil_mode=False))
- self.pool.append(pool)
- self.conv = ConvBNLayer(
- ch_in,
- ch_out,
- k,
- padding=k // 2,
- norm_type=norm_type,
- freeze_norm=freeze_norm,
- name=name,
- act=act,
- data_format=data_format)
- def forward(self, x):
- outs = [x]
- for pool in self.pool:
- outs.append(pool(x))
- if self.data_format == "NCHW":
- y = paddle.concat(outs, axis=1)
- else:
- y = paddle.concat(outs, axis=-1)
- y = self.conv(y)
- return y
- class CoordConv(nn.Layer):
- def __init__(self,
- ch_in,
- ch_out,
- filter_size,
- padding,
- norm_type,
- freeze_norm=False,
- name='',
- data_format='NCHW'):
- """
- CoordConv layer
- Args:
- ch_in (int): input channel
- ch_out (int): output channel
- filter_size (int): filter size, default 3
- padding (int): padding size, default 0
- norm_type (str): batch norm type, default bn
- name (str): layer name
- data_format (str): data format, NCHW or NHWC
- """
- super(CoordConv, self).__init__()
- self.conv = ConvBNLayer(
- ch_in + 2,
- ch_out,
- filter_size=filter_size,
- padding=padding,
- norm_type=norm_type,
- freeze_norm=freeze_norm,
- data_format=data_format,
- name=name)
- self.data_format = data_format
- def forward(self, x):
- gx, gy = add_coord(x, self.data_format)
- if self.data_format == 'NCHW':
- y = paddle.concat([x, gx, gy], axis=1)
- else:
- y = paddle.concat([x, gx, gy], axis=-1)
- y = self.conv(y)
- return y
- class PPYOLODetBlock(nn.Layer):
- def __init__(self, cfg, name, data_format='NCHW'):
- """
- PPYOLODetBlock layer
- Args:
- cfg (list): layer configs for this block
- name (str): block name
- data_format (str): data format, NCHW or NHWC
- """
- super(PPYOLODetBlock, self).__init__()
- self.conv_module = nn.Sequential()
- for idx, (conv_name, layer, args, kwargs) in enumerate(cfg[:-1]):
- kwargs.update(
- name='{}.{}'.format(name, conv_name), data_format=data_format)
- self.conv_module.add_sublayer(conv_name, layer(*args, **kwargs))
- conv_name, layer, args, kwargs = cfg[-1]
- kwargs.update(
- name='{}.{}'.format(name, conv_name), data_format=data_format)
- self.tip = layer(*args, **kwargs)
- def forward(self, inputs):
- route = self.conv_module(inputs)
- tip = self.tip(route)
- return route, tip
- class PPYOLOTinyDetBlock(nn.Layer):
- def __init__(self,
- ch_in,
- ch_out,
- name,
- drop_block=False,
- block_size=3,
- keep_prob=0.9,
- data_format='NCHW'):
- """
- PPYOLO Tiny DetBlock layer
- Args:
- ch_in (list): input channel number
- ch_out (list): output channel number
- name (str): block name
- drop_block: whether user DropBlock
- block_size: drop block size
- keep_prob: probability to keep block in DropBlock
- data_format (str): data format, NCHW or NHWC
- """
- super(PPYOLOTinyDetBlock, self).__init__()
- self.drop_block_ = drop_block
- self.conv_module = nn.Sequential()
- cfgs = [
- # name, in channels, out channels, filter_size,
- # stride, padding, groups
- ['.0', ch_in, ch_out, 1, 1, 0, 1],
- ['.1', ch_out, ch_out, 5, 1, 2, ch_out],
- ['.2', ch_out, ch_out, 1, 1, 0, 1],
- ['.route', ch_out, ch_out, 5, 1, 2, ch_out],
- ]
- for cfg in cfgs:
- conv_name, conv_ch_in, conv_ch_out, filter_size, stride, padding, \
- groups = cfg
- self.conv_module.add_sublayer(
- name + conv_name,
- ConvBNLayer(
- ch_in=conv_ch_in,
- ch_out=conv_ch_out,
- filter_size=filter_size,
- stride=stride,
- padding=padding,
- groups=groups,
- name=name + conv_name))
- self.tip = ConvBNLayer(
- ch_in=ch_out,
- ch_out=ch_out,
- filter_size=1,
- stride=1,
- padding=0,
- groups=1,
- name=name + conv_name)
- if self.drop_block_:
- self.drop_block = DropBlock(
- block_size=block_size,
- keep_prob=keep_prob,
- data_format=data_format,
- name=name + '.dropblock')
- def forward(self, inputs):
- if self.drop_block_:
- inputs = self.drop_block(inputs)
- route = self.conv_module(inputs)
- tip = self.tip(route)
- return route, tip
- class PPYOLODetBlockCSP(nn.Layer):
- def __init__(self,
- cfg,
- ch_in,
- ch_out,
- act,
- norm_type,
- name,
- data_format='NCHW'):
- """
- PPYOLODetBlockCSP layer
- Args:
- cfg (list): layer configs for this block
- ch_in (int): input channel
- ch_out (int): output channel
- act (str): default mish
- name (str): block name
- data_format (str): data format, NCHW or NHWC
- """
- super(PPYOLODetBlockCSP, self).__init__()
- self.data_format = data_format
- self.conv1 = ConvBNLayer(
- ch_in,
- ch_out,
- 1,
- padding=0,
- act=act,
- norm_type=norm_type,
- name=name + '.left',
- data_format=data_format)
- self.conv2 = ConvBNLayer(
- ch_in,
- ch_out,
- 1,
- padding=0,
- act=act,
- norm_type=norm_type,
- name=name + '.right',
- data_format=data_format)
- self.conv3 = ConvBNLayer(
- ch_out * 2,
- ch_out * 2,
- 1,
- padding=0,
- act=act,
- norm_type=norm_type,
- name=name,
- data_format=data_format)
- self.conv_module = nn.Sequential()
- for idx, (layer_name, layer, args, kwargs) in enumerate(cfg):
- kwargs.update(name=name + layer_name, data_format=data_format)
- self.conv_module.add_sublayer(layer_name, layer(*args, **kwargs))
- def forward(self, inputs):
- conv_left = self.conv1(inputs)
- conv_right = self.conv2(inputs)
- conv_left = self.conv_module(conv_left)
- if self.data_format == 'NCHW':
- conv = paddle.concat([conv_left, conv_right], axis=1)
- else:
- conv = paddle.concat([conv_left, conv_right], axis=-1)
- conv = self.conv3(conv)
- return conv, conv
- @register
- @serializable
- class YOLOv3FPN(nn.Layer):
- __shared__ = ['norm_type', 'data_format']
- def __init__(self,
- in_channels=[256, 512, 1024],
- norm_type='bn',
- freeze_norm=False,
- data_format='NCHW'):
- """
- YOLOv3FPN layer
- Args:
- in_channels (list): input channels for fpn
- norm_type (str): batch norm type, default bn
- data_format (str): data format, NCHW or NHWC
- """
- super(YOLOv3FPN, self).__init__()
- assert len(in_channels) > 0, "in_channels length should > 0"
- self.in_channels = in_channels
- self.num_blocks = len(in_channels)
- self._out_channels = []
- self.yolo_blocks = []
- self.routes = []
- self.data_format = data_format
- for i in range(self.num_blocks):
- name = 'yolo_block.{}'.format(i)
- in_channel = in_channels[-i - 1]
- if i > 0:
- in_channel += 512 // (2**i)
- yolo_block = self.add_sublayer(
- name,
- YoloDetBlock(
- in_channel,
- channel=512 // (2**i),
- norm_type=norm_type,
- freeze_norm=freeze_norm,
- data_format=data_format,
- name=name))
- self.yolo_blocks.append(yolo_block)
- # tip layer output channel doubled
- self._out_channels.append(1024 // (2**i))
- if i < self.num_blocks - 1:
- name = 'yolo_transition.{}'.format(i)
- route = self.add_sublayer(
- name,
- ConvBNLayer(
- ch_in=512 // (2**i),
- ch_out=256 // (2**i),
- filter_size=1,
- stride=1,
- padding=0,
- norm_type=norm_type,
- freeze_norm=freeze_norm,
- data_format=data_format,
- name=name))
- self.routes.append(route)
- def forward(self, blocks, for_mot=False):
- assert len(blocks) == self.num_blocks
- blocks = blocks[::-1]
- yolo_feats = []
- # add embedding features output for multi-object tracking model
- if for_mot:
- emb_feats = []
- for i, block in enumerate(blocks):
- if i > 0:
- if self.data_format == 'NCHW':
- block = paddle.concat([route, block], axis=1)
- else:
- block = paddle.concat([route, block], axis=-1)
- route, tip = self.yolo_blocks[i](block)
- yolo_feats.append(tip)
- if for_mot:
- # add embedding features output
- emb_feats.append(route)
- if i < self.num_blocks - 1:
- route = self.routes[i](route)
- route = F.interpolate(
- route, scale_factor=2., data_format=self.data_format)
- if for_mot:
- return {'yolo_feats': yolo_feats, 'emb_feats': emb_feats}
- else:
- return yolo_feats
- @classmethod
- def from_config(cls, cfg, input_shape):
- return {'in_channels': [i.channels for i in input_shape], }
- @property
- def out_shape(self):
- return [ShapeSpec(channels=c) for c in self._out_channels]
- @register
- @serializable
- class PPYOLOFPN(nn.Layer):
- __shared__ = ['norm_type', 'data_format']
- def __init__(self,
- in_channels=[512, 1024, 2048],
- norm_type='bn',
- freeze_norm=False,
- data_format='NCHW',
- coord_conv=False,
- conv_block_num=2,
- drop_block=False,
- block_size=3,
- keep_prob=0.9,
- spp=False):
- """
- PPYOLOFPN layer
- Args:
- in_channels (list): input channels for fpn
- norm_type (str): batch norm type, default bn
- data_format (str): data format, NCHW or NHWC
- coord_conv (bool): whether use CoordConv or not
- conv_block_num (int): conv block num of each pan block
- drop_block (bool): whether use DropBlock or not
- block_size (int): block size of DropBlock
- keep_prob (float): keep probability of DropBlock
- spp (bool): whether use spp or not
- """
- super(PPYOLOFPN, self).__init__()
- assert len(in_channels) > 0, "in_channels length should > 0"
- self.in_channels = in_channels
- self.num_blocks = len(in_channels)
- # parse kwargs
- self.coord_conv = coord_conv
- self.drop_block = drop_block
- self.block_size = block_size
- self.keep_prob = keep_prob
- self.spp = spp
- self.conv_block_num = conv_block_num
- self.data_format = data_format
- if self.coord_conv:
- ConvLayer = CoordConv
- else:
- ConvLayer = ConvBNLayer
- if self.drop_block:
- dropblock_cfg = [[
- 'dropblock', DropBlock, [self.block_size, self.keep_prob],
- dict()
- ]]
- else:
- dropblock_cfg = []
- self._out_channels = []
- self.yolo_blocks = []
- self.routes = []
- for i, ch_in in enumerate(self.in_channels[::-1]):
- if i > 0:
- ch_in += 512 // (2**i)
- channel = 64 * (2**self.num_blocks) // (2**i)
- base_cfg = []
- c_in, c_out = ch_in, channel
- for j in range(self.conv_block_num):
- base_cfg += [
- [
- 'conv{}'.format(2 * j), ConvLayer, [c_in, c_out, 1],
- dict(
- padding=0,
- norm_type=norm_type,
- freeze_norm=freeze_norm)
- ],
- [
- 'conv{}'.format(2 * j + 1), ConvBNLayer,
- [c_out, c_out * 2, 3], dict(
- padding=1,
- norm_type=norm_type,
- freeze_norm=freeze_norm)
- ],
- ]
- c_in, c_out = c_out * 2, c_out
- base_cfg += [[
- 'route', ConvLayer, [c_in, c_out, 1], dict(
- padding=0, norm_type=norm_type, freeze_norm=freeze_norm)
- ], [
- 'tip', ConvLayer, [c_out, c_out * 2, 3], dict(
- padding=1, norm_type=norm_type, freeze_norm=freeze_norm)
- ]]
- if self.conv_block_num == 2:
- if i == 0:
- if self.spp:
- spp_cfg = [[
- 'spp', SPP, [channel * 4, channel, 1], dict(
- pool_size=[5, 9, 13],
- norm_type=norm_type,
- freeze_norm=freeze_norm)
- ]]
- else:
- spp_cfg = []
- cfg = base_cfg[0:3] + spp_cfg + base_cfg[
- 3:4] + dropblock_cfg + base_cfg[4:6]
- else:
- cfg = base_cfg[0:2] + dropblock_cfg + base_cfg[2:6]
- elif self.conv_block_num == 0:
- if self.spp and i == 0:
- spp_cfg = [[
- 'spp', SPP, [c_in * 4, c_in, 1], dict(
- pool_size=[5, 9, 13],
- norm_type=norm_type,
- freeze_norm=freeze_norm)
- ]]
- else:
- spp_cfg = []
- cfg = spp_cfg + dropblock_cfg + base_cfg
- name = 'yolo_block.{}'.format(i)
- yolo_block = self.add_sublayer(name, PPYOLODetBlock(cfg, name))
- self.yolo_blocks.append(yolo_block)
- self._out_channels.append(channel * 2)
- if i < self.num_blocks - 1:
- name = 'yolo_transition.{}'.format(i)
- route = self.add_sublayer(
- name,
- ConvBNLayer(
- ch_in=channel,
- ch_out=256 // (2**i),
- filter_size=1,
- stride=1,
- padding=0,
- norm_type=norm_type,
- freeze_norm=freeze_norm,
- data_format=data_format,
- name=name))
- self.routes.append(route)
- def forward(self, blocks, for_mot=False):
- assert len(blocks) == self.num_blocks
- blocks = blocks[::-1]
- yolo_feats = []
- # add embedding features output for multi-object tracking model
- if for_mot:
- emb_feats = []
- for i, block in enumerate(blocks):
- if i > 0:
- if self.data_format == 'NCHW':
- block = paddle.concat([route, block], axis=1)
- else:
- block = paddle.concat([route, block], axis=-1)
- route, tip = self.yolo_blocks[i](block)
- yolo_feats.append(tip)
- if for_mot:
- # add embedding features output
- emb_feats.append(route)
- if i < self.num_blocks - 1:
- route = self.routes[i](route)
- route = F.interpolate(
- route, scale_factor=2., data_format=self.data_format)
- if for_mot:
- return {'yolo_feats': yolo_feats, 'emb_feats': emb_feats}
- else:
- return yolo_feats
- @classmethod
- def from_config(cls, cfg, input_shape):
- return {'in_channels': [i.channels for i in input_shape], }
- @property
- def out_shape(self):
- return [ShapeSpec(channels=c) for c in self._out_channels]
- @register
- @serializable
- class PPYOLOTinyFPN(nn.Layer):
- __shared__ = ['norm_type', 'data_format']
- def __init__(self,
- in_channels=[80, 56, 34],
- detection_block_channels=[160, 128, 96],
- norm_type='bn',
- data_format='NCHW',
- **kwargs):
- """
- PPYOLO Tiny FPN layer
- Args:
- in_channels (list): input channels for fpn
- detection_block_channels (list): channels in fpn
- norm_type (str): batch norm type, default bn
- data_format (str): data format, NCHW or NHWC
- kwargs: extra key-value pairs, such as parameter of DropBlock and spp
- """
- super(PPYOLOTinyFPN, self).__init__()
- assert len(in_channels) > 0, "in_channels length should > 0"
- self.in_channels = in_channels[::-1]
- assert len(detection_block_channels
- ) > 0, "detection_block_channelslength should > 0"
- self.detection_block_channels = detection_block_channels
- self.data_format = data_format
- self.num_blocks = len(in_channels)
- # parse kwargs
- self.drop_block = kwargs.get('drop_block', False)
- self.block_size = kwargs.get('block_size', 3)
- self.keep_prob = kwargs.get('keep_prob', 0.9)
- self.spp_ = kwargs.get('spp', False)
- if self.spp_:
- self.spp = SPP(self.in_channels[0] * 4,
- self.in_channels[0],
- k=1,
- pool_size=[5, 9, 13],
- norm_type=norm_type,
- name='spp')
- self._out_channels = []
- self.yolo_blocks = []
- self.routes = []
- for i, (
- ch_in, ch_out
- ) in enumerate(zip(self.in_channels, self.detection_block_channels)):
- name = 'yolo_block.{}'.format(i)
- if i > 0:
- ch_in += self.detection_block_channels[i - 1]
- yolo_block = self.add_sublayer(
- name,
- PPYOLOTinyDetBlock(
- ch_in,
- ch_out,
- name,
- drop_block=self.drop_block,
- block_size=self.block_size,
- keep_prob=self.keep_prob))
- self.yolo_blocks.append(yolo_block)
- self._out_channels.append(ch_out)
- if i < self.num_blocks - 1:
- name = 'yolo_transition.{}'.format(i)
- route = self.add_sublayer(
- name,
- ConvBNLayer(
- ch_in=ch_out,
- ch_out=ch_out,
- filter_size=1,
- stride=1,
- padding=0,
- norm_type=norm_type,
- data_format=data_format,
- name=name))
- self.routes.append(route)
- def forward(self, blocks, for_mot=False):
- assert len(blocks) == self.num_blocks
- blocks = blocks[::-1]
- yolo_feats = []
- # add embedding features output for multi-object tracking model
- if for_mot:
- emb_feats = []
- for i, block in enumerate(blocks):
- if i == 0 and self.spp_:
- block = self.spp(block)
- if i > 0:
- if self.data_format == 'NCHW':
- block = paddle.concat([route, block], axis=1)
- else:
- block = paddle.concat([route, block], axis=-1)
- route, tip = self.yolo_blocks[i](block)
- yolo_feats.append(tip)
- if for_mot:
- # add embedding features output
- emb_feats.append(route)
- if i < self.num_blocks - 1:
- route = self.routes[i](route)
- route = F.interpolate(
- route, scale_factor=2., data_format=self.data_format)
- if for_mot:
- return {'yolo_feats': yolo_feats, 'emb_feats': emb_feats}
- else:
- return yolo_feats
- @classmethod
- def from_config(cls, cfg, input_shape):
- return {'in_channels': [i.channels for i in input_shape], }
- @property
- def out_shape(self):
- return [ShapeSpec(channels=c) for c in self._out_channels]
- @register
- @serializable
- class PPYOLOPAN(nn.Layer):
- __shared__ = ['norm_type', 'data_format']
- def __init__(self,
- in_channels=[512, 1024, 2048],
- norm_type='bn',
- data_format='NCHW',
- act='mish',
- conv_block_num=3,
- drop_block=False,
- block_size=3,
- keep_prob=0.9,
- spp=False):
- """
- PPYOLOPAN layer with SPP, DropBlock and CSP connection.
- Args:
- in_channels (list): input channels for fpn
- norm_type (str): batch norm type, default bn
- data_format (str): data format, NCHW or NHWC
- act (str): activation function, default mish
- conv_block_num (int): conv block num of each pan block
- drop_block (bool): whether use DropBlock or not
- block_size (int): block size of DropBlock
- keep_prob (float): keep probability of DropBlock
- spp (bool): whether use spp or not
- """
- super(PPYOLOPAN, self).__init__()
- assert len(in_channels) > 0, "in_channels length should > 0"
- self.in_channels = in_channels
- self.num_blocks = len(in_channels)
- # parse kwargs
- self.drop_block = drop_block
- self.block_size = block_size
- self.keep_prob = keep_prob
- self.spp = spp
- self.conv_block_num = conv_block_num
- self.data_format = data_format
- if self.drop_block:
- dropblock_cfg = [[
- 'dropblock', DropBlock, [self.block_size, self.keep_prob],
- dict()
- ]]
- else:
- dropblock_cfg = []
- # fpn
- self.fpn_blocks = []
- self.fpn_routes = []
- fpn_channels = []
- for i, ch_in in enumerate(self.in_channels[::-1]):
- if i > 0:
- ch_in += 512 // (2**(i - 1))
- channel = 512 // (2**i)
- base_cfg = []
- for j in range(self.conv_block_num):
- base_cfg += [
- # name, layer, args
- [
- '{}.0'.format(j), ConvBNLayer, [channel, channel, 1],
- dict(
- padding=0, act=act, norm_type=norm_type)
- ],
- [
- '{}.1'.format(j), ConvBNLayer, [channel, channel, 3],
- dict(
- padding=1, act=act, norm_type=norm_type)
- ]
- ]
- if i == 0 and self.spp:
- base_cfg[3] = [
- 'spp', SPP, [channel * 4, channel, 1], dict(
- pool_size=[5, 9, 13], act=act, norm_type=norm_type)
- ]
- cfg = base_cfg[:4] + dropblock_cfg + base_cfg[4:]
- name = 'fpn.{}'.format(i)
- fpn_block = self.add_sublayer(
- name,
- PPYOLODetBlockCSP(cfg, ch_in, channel, act, norm_type, name,
- data_format))
- self.fpn_blocks.append(fpn_block)
- fpn_channels.append(channel * 2)
- if i < self.num_blocks - 1:
- name = 'fpn_transition.{}'.format(i)
- route = self.add_sublayer(
- name,
- ConvBNLayer(
- ch_in=channel * 2,
- ch_out=channel,
- filter_size=1,
- stride=1,
- padding=0,
- act=act,
- norm_type=norm_type,
- data_format=data_format,
- name=name))
- self.fpn_routes.append(route)
- # pan
- self.pan_blocks = []
- self.pan_routes = []
- self._out_channels = [512 // (2**(self.num_blocks - 2)), ]
- for i in reversed(range(self.num_blocks - 1)):
- name = 'pan_transition.{}'.format(i)
- route = self.add_sublayer(
- name,
- ConvBNLayer(
- ch_in=fpn_channels[i + 1],
- ch_out=fpn_channels[i + 1],
- filter_size=3,
- stride=2,
- padding=1,
- act=act,
- norm_type=norm_type,
- data_format=data_format,
- name=name))
- self.pan_routes = [route, ] + self.pan_routes
- base_cfg = []
- ch_in = fpn_channels[i] + fpn_channels[i + 1]
- channel = 512 // (2**i)
- for j in range(self.conv_block_num):
- base_cfg += [
- # name, layer, args
- [
- '{}.0'.format(j), ConvBNLayer, [channel, channel, 1],
- dict(
- padding=0, act=act, norm_type=norm_type)
- ],
- [
- '{}.1'.format(j), ConvBNLayer, [channel, channel, 3],
- dict(
- padding=1, act=act, norm_type=norm_type)
- ]
- ]
- cfg = base_cfg[:4] + dropblock_cfg + base_cfg[4:]
- name = 'pan.{}'.format(i)
- pan_block = self.add_sublayer(
- name,
- PPYOLODetBlockCSP(cfg, ch_in, channel, act, norm_type, name,
- data_format))
- self.pan_blocks = [pan_block, ] + self.pan_blocks
- self._out_channels.append(channel * 2)
- self._out_channels = self._out_channels[::-1]
- def forward(self, blocks, for_mot=False):
- assert len(blocks) == self.num_blocks
- blocks = blocks[::-1]
- fpn_feats = []
- # add embedding features output for multi-object tracking model
- if for_mot:
- emb_feats = []
- for i, block in enumerate(blocks):
- if i > 0:
- if self.data_format == 'NCHW':
- block = paddle.concat([route, block], axis=1)
- else:
- block = paddle.concat([route, block], axis=-1)
- route, tip = self.fpn_blocks[i](block)
- fpn_feats.append(tip)
- if for_mot:
- # add embedding features output
- emb_feats.append(route)
- if i < self.num_blocks - 1:
- route = self.fpn_routes[i](route)
- route = F.interpolate(
- route, scale_factor=2., data_format=self.data_format)
- pan_feats = [fpn_feats[-1], ]
- route = fpn_feats[self.num_blocks - 1]
- for i in reversed(range(self.num_blocks - 1)):
- block = fpn_feats[i]
- route = self.pan_routes[i](route)
- if self.data_format == 'NCHW':
- block = paddle.concat([route, block], axis=1)
- else:
- block = paddle.concat([route, block], axis=-1)
- route, tip = self.pan_blocks[i](block)
- pan_feats.append(tip)
- if for_mot:
- return {'yolo_feats': pan_feats[::-1], 'emb_feats': emb_feats}
- else:
- return pan_feats[::-1]
- @classmethod
- def from_config(cls, cfg, input_shape):
- return {'in_channels': [i.channels for i in input_shape], }
- @property
- def out_shape(self):
- return [ShapeSpec(channels=c) for c in self._out_channels]
|