| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import math
- import paddle
- import paddle.nn as nn
- from paddlex.ppdet.core.workspace import register
- @register
- class AnchorGenerator(nn.Layer):
- """
- Generate anchors according to the feature maps
- Args:
- anchor_sizes (list[float] | list[list[float]]): The anchor sizes at
- each feature point. list[float] means all feature levels share the
- same sizes. list[list[float]] means the anchor sizes for
- each level. The sizes stand for the scale of input size.
- aspect_ratios (list[float] | list[list[float]]): The aspect ratios at
- each feature point. list[float] means all feature levels share the
- same ratios. list[list[float]] means the aspect ratios for
- each level.
- strides (list[float]): The strides of feature maps which generate
- anchors
- offset (float): The offset of the coordinate of anchors, default 0.
- """
- def __init__(self,
- anchor_sizes=[32, 64, 128, 256, 512],
- aspect_ratios=[0.5, 1.0, 2.0],
- strides=[16.0],
- variance=[1.0, 1.0, 1.0, 1.0],
- offset=0.):
- super(AnchorGenerator, self).__init__()
- self.anchor_sizes = anchor_sizes
- self.aspect_ratios = aspect_ratios
- self.strides = strides
- self.variance = variance
- self.cell_anchors = self._calculate_anchors(len(strides))
- self.offset = offset
- def _broadcast_params(self, params, num_features):
- if not isinstance(params[0], (list, tuple)): # list[float]
- return [params] * num_features
- if len(params) == 1:
- return list(params) * num_features
- return params
- def generate_cell_anchors(self, sizes, aspect_ratios):
- anchors = []
- for size in sizes:
- area = size**2.0
- for aspect_ratio in aspect_ratios:
- w = math.sqrt(area / aspect_ratio)
- h = aspect_ratio * w
- x0, y0, x1, y1 = -w / 2.0, -h / 2.0, w / 2.0, h / 2.0
- anchors.append([x0, y0, x1, y1])
- return paddle.to_tensor(anchors, dtype='float32')
- def _calculate_anchors(self, num_features):
- sizes = self._broadcast_params(self.anchor_sizes, num_features)
- aspect_ratios = self._broadcast_params(self.aspect_ratios,
- num_features)
- cell_anchors = [
- self.generate_cell_anchors(s, a)
- for s, a in zip(sizes, aspect_ratios)
- ]
- [
- self.register_buffer(
- t.name, t, persistable=False) for t in cell_anchors
- ]
- return cell_anchors
- def _create_grid_offsets(self, size, stride, offset):
- grid_height, grid_width = size[0], size[1]
- shifts_x = paddle.arange(
- offset * stride, grid_width * stride, step=stride, dtype='float32')
- shifts_y = paddle.arange(
- offset * stride,
- grid_height * stride,
- step=stride,
- dtype='float32')
- shift_y, shift_x = paddle.meshgrid(shifts_y, shifts_x)
- shift_x = paddle.reshape(shift_x, [-1])
- shift_y = paddle.reshape(shift_y, [-1])
- return shift_x, shift_y
- def _grid_anchors(self, grid_sizes):
- anchors = []
- for size, stride, base_anchors in zip(grid_sizes, self.strides,
- self.cell_anchors):
- shift_x, shift_y = self._create_grid_offsets(size, stride,
- self.offset)
- shifts = paddle.stack((shift_x, shift_y, shift_x, shift_y), axis=1)
- shifts = paddle.reshape(shifts, [-1, 1, 4])
- base_anchors = paddle.reshape(base_anchors, [1, -1, 4])
- anchors.append(paddle.reshape(shifts + base_anchors, [-1, 4]))
- return anchors
- def forward(self, input):
- grid_sizes = [paddle.shape(feature_map)[-2:] for feature_map in input]
- anchors_over_all_feature_maps = self._grid_anchors(grid_sizes)
- return anchors_over_all_feature_maps
- @property
- def num_anchors(self):
- """
- Returns:
- int: number of anchors at every pixel
- location, on that feature map.
- For example, if at every pixel we use anchors of 3 aspect
- ratios and 5 sizes, the number of anchors is 15.
- For FPN models, `num_anchors` on every feature map is the same.
- """
- return len(self.cell_anchors[0])
|