| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import numpy as np
- import math
- import paddle
- import paddle.nn as nn
- import paddle.nn.functional as F
- from paddle.nn.initializer import KaimingUniform, Uniform
- from paddlex.ppdet.core.workspace import register
- from paddlex.ppdet.modeling.heads.centernet_head import ConvLayer
- __all__ = ['FairMOTEmbeddingHead']
- @register
- class FairMOTEmbeddingHead(nn.Layer):
- """
- Args:
- in_channels (int): the channel number of input to FairMOTEmbeddingHead.
- ch_head (int): the channel of features before fed into embedding, 256 by default.
- ch_emb (int): the channel of the embedding feature, 128 by default.
- num_identifiers (int): the number of identifiers, 14455 by default.
- """
- def __init__(self,
- in_channels,
- ch_head=256,
- ch_emb=128,
- num_identifiers=14455):
- super(FairMOTEmbeddingHead, self).__init__()
- self.reid = nn.Sequential(
- ConvLayer(
- in_channels, ch_head, kernel_size=3, padding=1, bias=True),
- nn.ReLU(),
- ConvLayer(
- ch_head, ch_emb, kernel_size=1, stride=1, padding=0,
- bias=True))
- param_attr = paddle.ParamAttr(initializer=KaimingUniform())
- bound = 1 / math.sqrt(ch_emb)
- bias_attr = paddle.ParamAttr(initializer=Uniform(-bound, bound))
- self.classifier = nn.Linear(
- ch_emb,
- num_identifiers,
- weight_attr=param_attr,
- bias_attr=bias_attr)
- self.reid_loss = nn.CrossEntropyLoss(ignore_index=-1, reduction='sum')
- # When num_identifiers is 1, emb_scale is set as 1
- self.emb_scale = math.sqrt(2) * math.log(
- num_identifiers - 1) if num_identifiers > 1 else 1
- @classmethod
- def from_config(cls, cfg, input_shape):
- if isinstance(input_shape, (list, tuple)):
- input_shape = input_shape[0]
- return {'in_channels': input_shape.channels}
- def forward(self, feat, inputs):
- reid_feat = self.reid(feat)
- if self.training:
- loss = self.get_loss(reid_feat, inputs)
- return loss
- else:
- reid_feat = F.normalize(reid_feat)
- return reid_feat
- def get_loss(self, feat, inputs):
- index = inputs['index']
- mask = inputs['index_mask']
- target = inputs['reid']
- target = paddle.masked_select(target, mask > 0)
- target = paddle.unsqueeze(target, 1)
- feat = paddle.transpose(feat, perm=[0, 2, 3, 1])
- feat_n, feat_h, feat_w, feat_c = feat.shape
- feat = paddle.reshape(feat, shape=[feat_n, -1, feat_c])
- index = paddle.unsqueeze(index, 2)
- batch_inds = list()
- for i in range(feat_n):
- batch_ind = paddle.full(
- shape=[1, index.shape[1], 1], fill_value=i, dtype='int64')
- batch_inds.append(batch_ind)
- batch_inds = paddle.concat(batch_inds, axis=0)
- index = paddle.concat(x=[batch_inds, index], axis=2)
- feat = paddle.gather_nd(feat, index=index)
- mask = paddle.unsqueeze(mask, axis=2)
- mask = paddle.expand_as(mask, feat)
- mask.stop_gradient = True
- feat = paddle.masked_select(feat, mask > 0)
- feat = paddle.reshape(feat, shape=[-1, feat_c])
- feat = F.normalize(feat)
- feat = self.emb_scale * feat
- logit = self.classifier(feat)
- target.stop_gradient = True
- loss = self.reid_loss(logit, target)
- valid = (target != self.reid_loss.ignore_index)
- valid.stop_gradient = True
- count = paddle.sum((paddle.cast(valid, dtype=np.int32)))
- count.stop_gradient = True
- if count > 0:
- loss = loss / count
- return loss
|