resnet.py 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310
  1. # copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from __future__ import absolute_import
  15. from __future__ import division
  16. from __future__ import print_function
  17. import os
  18. import math
  19. import paddle
  20. from paddle import ParamAttr
  21. import paddle.nn as nn
  22. import paddle.nn.functional as F
  23. from paddle.nn.initializer import Normal
  24. __all__ = ["ResNet18", "ResNet34", "ResNet50", "ResNet101", "ResNet152"]
  25. class ConvBNLayer(nn.Layer):
  26. def __init__(self,
  27. num_channels,
  28. num_filters,
  29. filter_size,
  30. stride=1,
  31. dilation=1,
  32. groups=1,
  33. act=None,
  34. lr_mult=1.0,
  35. name=None,
  36. data_format="NCHW"):
  37. super(ConvBNLayer, self).__init__()
  38. conv_stdv = filter_size * filter_size * num_filters
  39. self._conv = nn.Conv2D(
  40. in_channels=num_channels,
  41. out_channels=num_filters,
  42. kernel_size=filter_size,
  43. stride=stride,
  44. padding=(filter_size - 1) // 2,
  45. dilation=dilation,
  46. groups=groups,
  47. weight_attr=ParamAttr(
  48. learning_rate=lr_mult,
  49. initializer=Normal(0, math.sqrt(2. / conv_stdv))),
  50. bias_attr=False,
  51. data_format=data_format)
  52. self._batch_norm = nn.BatchNorm(
  53. num_filters, act=act, data_layout=data_format)
  54. def forward(self, inputs):
  55. y = self._conv(inputs)
  56. y = self._batch_norm(y)
  57. return y
  58. class BottleneckBlock(nn.Layer):
  59. def __init__(self,
  60. num_channels,
  61. num_filters,
  62. stride,
  63. shortcut=True,
  64. name=None,
  65. lr_mult=1.0,
  66. dilation=1,
  67. data_format="NCHW"):
  68. super(BottleneckBlock, self).__init__()
  69. self.conv0 = ConvBNLayer(
  70. num_channels=num_channels,
  71. num_filters=num_filters,
  72. filter_size=1,
  73. dilation=dilation,
  74. act="relu",
  75. lr_mult=lr_mult,
  76. name=name + "_branch2a",
  77. data_format=data_format)
  78. self.conv1 = ConvBNLayer(
  79. num_channels=num_filters,
  80. num_filters=num_filters,
  81. filter_size=3,
  82. dilation=dilation,
  83. stride=stride,
  84. act="relu",
  85. lr_mult=lr_mult,
  86. name=name + "_branch2b",
  87. data_format=data_format)
  88. self.conv2 = ConvBNLayer(
  89. num_channels=num_filters,
  90. num_filters=num_filters * 4,
  91. filter_size=1,
  92. dilation=dilation,
  93. act=None,
  94. lr_mult=lr_mult,
  95. name=name + "_branch2c",
  96. data_format=data_format)
  97. if not shortcut:
  98. self.short = ConvBNLayer(
  99. num_channels=num_channels,
  100. num_filters=num_filters * 4,
  101. filter_size=1,
  102. dilation=dilation,
  103. stride=stride,
  104. lr_mult=lr_mult,
  105. name=name + "_branch1",
  106. data_format=data_format)
  107. self.shortcut = shortcut
  108. self._num_channels_out = num_filters * 4
  109. def forward(self, inputs):
  110. y = self.conv0(inputs)
  111. conv1 = self.conv1(y)
  112. conv2 = self.conv2(conv1)
  113. if self.shortcut:
  114. short = inputs
  115. else:
  116. short = self.short(inputs)
  117. y = paddle.add(x=short, y=conv2)
  118. y = F.relu(y)
  119. return y
  120. class BasicBlock(nn.Layer):
  121. def __init__(self,
  122. num_channels,
  123. num_filters,
  124. stride,
  125. shortcut=True,
  126. name=None,
  127. data_format="NCHW"):
  128. super(BasicBlock, self).__init__()
  129. self.stride = stride
  130. self.conv0 = ConvBNLayer(
  131. num_channels=num_channels,
  132. num_filters=num_filters,
  133. filter_size=3,
  134. stride=stride,
  135. act="relu",
  136. name=name + "_branch2a",
  137. data_format=data_format)
  138. self.conv1 = ConvBNLayer(
  139. num_channels=num_filters,
  140. num_filters=num_filters,
  141. filter_size=3,
  142. act=None,
  143. name=name + "_branch2b",
  144. data_format=data_format)
  145. if not shortcut:
  146. self.short = ConvBNLayer(
  147. num_channels=num_channels,
  148. num_filters=num_filters,
  149. filter_size=1,
  150. stride=stride,
  151. name=name + "_branch1",
  152. data_format=data_format)
  153. self.shortcut = shortcut
  154. def forward(self, inputs):
  155. y = self.conv0(inputs)
  156. conv1 = self.conv1(y)
  157. if self.shortcut:
  158. short = inputs
  159. else:
  160. short = self.short(inputs)
  161. y = paddle.add(x=short, y=conv1)
  162. y = F.relu(y)
  163. return y
  164. class ResNet(nn.Layer):
  165. def __init__(self,
  166. layers=50,
  167. lr_mult=1.0,
  168. last_conv_stride=2,
  169. last_conv_dilation=1):
  170. super(ResNet, self).__init__()
  171. self.layers = layers
  172. self.data_format = "NCHW"
  173. self.input_image_channel = 3
  174. supported_layers = [18, 34, 50, 101, 152]
  175. assert layers in supported_layers, \
  176. "supported layers are {} but input layer is {}".format(
  177. supported_layers, layers)
  178. if layers == 18:
  179. depth = [2, 2, 2, 2]
  180. elif layers == 34 or layers == 50:
  181. depth = [3, 4, 6, 3]
  182. elif layers == 101:
  183. depth = [3, 4, 23, 3]
  184. elif layers == 152:
  185. depth = [3, 8, 36, 3]
  186. num_channels = [64, 256, 512,
  187. 1024] if layers >= 50 else [64, 64, 128, 256]
  188. num_filters = [64, 128, 256, 512]
  189. self.conv = ConvBNLayer(
  190. num_channels=self.input_image_channel,
  191. num_filters=64,
  192. filter_size=7,
  193. stride=2,
  194. act="relu",
  195. lr_mult=lr_mult,
  196. name="conv1",
  197. data_format=self.data_format)
  198. self.pool2d_max = nn.MaxPool2D(
  199. kernel_size=3, stride=2, padding=1, data_format=self.data_format)
  200. self.block_list = []
  201. if layers >= 50:
  202. for block in range(len(depth)):
  203. shortcut = False
  204. for i in range(depth[block]):
  205. if layers in [101, 152] and block == 2:
  206. if i == 0:
  207. conv_name = "res" + str(block + 2) + "a"
  208. else:
  209. conv_name = "res" + str(block + 2) + "b" + str(i)
  210. else:
  211. conv_name = "res" + str(block + 2) + chr(97 + i)
  212. if i != 0 or block == 0:
  213. stride = 1
  214. elif block == len(depth) - 1:
  215. stride = last_conv_stride
  216. else:
  217. stride = 2
  218. bottleneck_block = self.add_sublayer(
  219. conv_name,
  220. BottleneckBlock(
  221. num_channels=num_channels[block]
  222. if i == 0 else num_filters[block] * 4,
  223. num_filters=num_filters[block],
  224. stride=stride,
  225. shortcut=shortcut,
  226. name=conv_name,
  227. lr_mult=lr_mult,
  228. dilation=last_conv_dilation
  229. if block == len(depth) - 1 else 1,
  230. data_format=self.data_format))
  231. self.block_list.append(bottleneck_block)
  232. shortcut = True
  233. else:
  234. for block in range(len(depth)):
  235. shortcut = False
  236. for i in range(depth[block]):
  237. conv_name = "res" + str(block + 2) + chr(97 + i)
  238. basic_block = self.add_sublayer(
  239. conv_name,
  240. BasicBlock(
  241. num_channels=num_channels[block]
  242. if i == 0 else num_filters[block],
  243. num_filters=num_filters[block],
  244. stride=2 if i == 0 and block != 0 else 1,
  245. shortcut=shortcut,
  246. name=conv_name,
  247. data_format=self.data_format))
  248. self.block_list.append(basic_block)
  249. shortcut = True
  250. def forward(self, inputs):
  251. y = self.conv(inputs)
  252. y = self.pool2d_max(y)
  253. for block in self.block_list:
  254. y = block(y)
  255. return y
  256. def ResNet18(**args):
  257. model = ResNet(layers=18, **args)
  258. return model
  259. def ResNet34(**args):
  260. model = ResNet(layers=34, **args)
  261. return model
  262. def ResNet50(pretrained=None, **args):
  263. model = ResNet(layers=50, **args)
  264. if pretrained is not None:
  265. if not (os.path.isdir(pretrained) or
  266. os.path.exists(pretrained + '.pdparams')):
  267. raise ValueError("Model pretrain path {} does not "
  268. "exists.".format(pretrained))
  269. param_state_dict = paddle.load(pretrained + '.pdparams')
  270. model.set_dict(param_state_dict)
  271. return model
  272. def ResNet101(pretrained=None, **args):
  273. model = ResNet(layers=101, **args)
  274. if pretrained is not None:
  275. if not (os.path.isdir(pretrained) or
  276. os.path.exists(pretrained + '.pdparams')):
  277. raise ValueError("Model pretrain path {} does not "
  278. "exists.".format(pretrained))
  279. param_state_dict = paddle.load(pretrained + '.pdparams')
  280. model.set_dict(param_state_dict)
  281. return model
  282. def ResNet152(**args):
  283. model = ResNet(layers=152, **args)
  284. return model