position_encoding.py 3.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105
  1. # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from __future__ import absolute_import
  15. from __future__ import division
  16. from __future__ import print_function
  17. import math
  18. import paddle
  19. import paddle.nn as nn
  20. from paddlex.ppdet.core.workspace import register, serializable
  21. @register
  22. @serializable
  23. class PositionEmbedding(nn.Layer):
  24. def __init__(self,
  25. num_pos_feats=128,
  26. temperature=10000,
  27. normalize=True,
  28. scale=None,
  29. embed_type='sine',
  30. num_embeddings=50,
  31. offset=0.):
  32. super(PositionEmbedding, self).__init__()
  33. assert embed_type in ['sine', 'learned']
  34. self.embed_type = embed_type
  35. self.offset = offset
  36. self.eps = 1e-6
  37. if self.embed_type == 'sine':
  38. self.num_pos_feats = num_pos_feats
  39. self.temperature = temperature
  40. self.normalize = normalize
  41. if scale is not None and normalize is False:
  42. raise ValueError("normalize should be True if scale is passed")
  43. if scale is None:
  44. scale = 2 * math.pi
  45. self.scale = scale
  46. elif self.embed_type == 'learned':
  47. self.row_embed = nn.Embedding(num_embeddings, num_pos_feats)
  48. self.col_embed = nn.Embedding(num_embeddings, num_pos_feats)
  49. else:
  50. raise ValueError(f"not supported {self.embed_type}")
  51. def forward(self, mask):
  52. """
  53. Args:
  54. mask (Tensor): [B, H, W]
  55. Returns:
  56. pos (Tensor): [B, C, H, W]
  57. """
  58. assert mask.dtype == paddle.bool
  59. if self.embed_type == 'sine':
  60. mask = mask.astype('float32')
  61. y_embed = mask.cumsum(1, dtype='float32')
  62. x_embed = mask.cumsum(2, dtype='float32')
  63. if self.normalize:
  64. y_embed = (y_embed + self.offset) / (
  65. y_embed[:, -1:, :] + self.eps) * self.scale
  66. x_embed = (x_embed + self.offset) / (
  67. x_embed[:, :, -1:] + self.eps) * self.scale
  68. dim_t = 2 * (paddle.arange(self.num_pos_feats) //
  69. 2).astype('float32')
  70. dim_t = self.temperature**(dim_t / self.num_pos_feats)
  71. pos_x = x_embed.unsqueeze(-1) / dim_t
  72. pos_y = y_embed.unsqueeze(-1) / dim_t
  73. pos_x = paddle.stack(
  74. (pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()),
  75. axis=4).flatten(3)
  76. pos_y = paddle.stack(
  77. (pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()),
  78. axis=4).flatten(3)
  79. pos = paddle.concat((pos_y, pos_x), axis=3).transpose([0, 3, 1, 2])
  80. return pos
  81. elif self.embed_type == 'learned':
  82. h, w = mask.shape[-2:]
  83. i = paddle.arange(w)
  84. j = paddle.arange(h)
  85. x_emb = self.col_embed(i)
  86. y_emb = self.row_embed(j)
  87. pos = paddle.concat(
  88. [
  89. x_emb.unsqueeze(0).repeat(h, 1, 1),
  90. y_emb.unsqueeze(1).repeat(1, w, 1),
  91. ],
  92. axis=-1).transpose([2, 0, 1]).unsqueeze(0).tile(mask.shape[0],
  93. 1, 1, 1)
  94. return pos
  95. else:
  96. raise ValueError(f"not supported {self.embed_type}")