base.py 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533
  1. #copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. #Licensed under the Apache License, Version 2.0 (the "License");
  4. #you may not use this file except in compliance with the License.
  5. #You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. #Unless required by applicable law or agreed to in writing, software
  10. #distributed under the License is distributed on an "AS IS" BASIS,
  11. #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. #See the License for the specific language governing permissions and
  13. #limitations under the License.
  14. from __future__ import absolute_import
  15. import paddle.fluid as fluid
  16. import os
  17. import numpy as np
  18. import time
  19. import math
  20. import yaml
  21. import copy
  22. import json
  23. import functools
  24. import paddlex.utils.logging as logging
  25. from paddlex.utils import seconds_to_hms
  26. from paddlex.utils.utils import EarlyStop
  27. import paddlex
  28. from collections import OrderedDict
  29. from os import path as osp
  30. from paddle.fluid.framework import Program
  31. from .utils.pretrain_weights import get_pretrain_weights
  32. def dict2str(dict_input):
  33. out = ''
  34. for k, v in dict_input.items():
  35. try:
  36. v = round(float(v), 6)
  37. except:
  38. pass
  39. out = out + '{}={}, '.format(k, v)
  40. return out.strip(', ')
  41. class BaseAPI:
  42. def __init__(self, model_type):
  43. self.model_type = model_type
  44. # 现有的CV模型都有这个属性,而这个属且也需要在eval时用到
  45. self.num_classes = None
  46. self.labels = None
  47. self.version = paddlex.__version__
  48. if paddlex.env_info['place'] == 'cpu':
  49. self.places = fluid.cpu_places()
  50. else:
  51. self.places = fluid.cuda_places()
  52. self.exe = fluid.Executor(self.places[0])
  53. self.train_prog = None
  54. self.test_prog = None
  55. self.parallel_train_prog = None
  56. self.train_inputs = None
  57. self.test_inputs = None
  58. self.train_outputs = None
  59. self.test_outputs = None
  60. self.train_data_loader = None
  61. self.eval_metrics = None
  62. # 若模型是从inference model加载进来的,无法调用训练接口进行训练
  63. self.trainable = True
  64. # 是否使用多卡间同步BatchNorm均值和方差
  65. self.sync_bn = False
  66. # 当前模型状态
  67. self.status = 'Normal'
  68. def _get_single_card_bs(self, batch_size):
  69. if batch_size % len(self.places) == 0:
  70. return int(batch_size // len(self.places))
  71. else:
  72. raise Exception("Please support correct batch_size, \
  73. which can be divided by available cards({}) in {}".
  74. format(paddlex.env_info['num'],
  75. paddlex.env_info['place']))
  76. def build_program(self):
  77. # 构建训练网络
  78. self.train_inputs, self.train_outputs = self.build_net(mode='train')
  79. self.train_prog = fluid.default_main_program()
  80. startup_prog = fluid.default_startup_program()
  81. # 构建预测网络
  82. self.test_prog = fluid.Program()
  83. with fluid.program_guard(self.test_prog, startup_prog):
  84. with fluid.unique_name.guard():
  85. self.test_inputs, self.test_outputs = self.build_net(
  86. mode='test')
  87. self.test_prog = self.test_prog.clone(for_test=True)
  88. def arrange_transforms(self, transforms, mode='train'):
  89. # 给transforms添加arrange操作
  90. if self.model_type == 'classifier':
  91. arrange_transform = paddlex.cls.transforms.ArrangeClassifier
  92. elif self.model_type == 'segmenter':
  93. arrange_transform = paddlex.seg.transforms.ArrangeSegmenter
  94. elif self.model_type == 'detector':
  95. arrange_name = 'Arrange{}'.format(self.__class__.__name__)
  96. arrange_transform = getattr(paddlex.det.transforms, arrange_name)
  97. else:
  98. raise Exception("Unrecognized model type: {}".format(
  99. self.model_type))
  100. if type(transforms.transforms[-1]).__name__.startswith('Arrange'):
  101. transforms.transforms[-1] = arrange_transform(mode=mode)
  102. else:
  103. transforms.transforms.append(arrange_transform(mode=mode))
  104. def build_train_data_loader(self, dataset, batch_size):
  105. # 初始化data_loader
  106. if self.train_data_loader is None:
  107. self.train_data_loader = fluid.io.DataLoader.from_generator(
  108. feed_list=list(self.train_inputs.values()),
  109. capacity=64,
  110. use_double_buffer=True,
  111. iterable=True)
  112. batch_size_each_gpu = self._get_single_card_bs(batch_size)
  113. generator = dataset.generator(
  114. batch_size=batch_size_each_gpu, drop_last=True)
  115. self.train_data_loader.set_sample_list_generator(
  116. dataset.generator(batch_size=batch_size_each_gpu),
  117. places=self.places)
  118. def export_quant_model(self,
  119. dataset,
  120. save_dir,
  121. batch_size=1,
  122. batch_num=10,
  123. cache_dir="./temp"):
  124. self.arrange_transforms(transforms=dataset.transforms, mode='quant')
  125. dataset.num_samples = batch_size * batch_num
  126. try:
  127. from .slim.post_quantization import PaddleXPostTrainingQuantization
  128. except:
  129. raise Exception(
  130. "Model Quantization is not available, try to upgrade your paddlepaddle>=1.7.0"
  131. )
  132. is_use_cache_file = True
  133. if cache_dir is None:
  134. is_use_cache_file = False
  135. post_training_quantization = PaddleXPostTrainingQuantization(
  136. executor=self.exe,
  137. dataset=dataset,
  138. program=self.test_prog,
  139. inputs=self.test_inputs,
  140. outputs=self.test_outputs,
  141. batch_size=batch_size,
  142. batch_nums=batch_num,
  143. scope=None,
  144. algo='KL',
  145. quantizable_op_type=["conv2d", "depthwise_conv2d", "mul"],
  146. is_full_quantize=False,
  147. is_use_cache_file=is_use_cache_file,
  148. cache_dir=cache_dir)
  149. post_training_quantization.quantize()
  150. post_training_quantization.save_quantized_model(save_dir)
  151. model_info = self.get_model_info()
  152. model_info['status'] = 'Quant'
  153. # 保存模型输出的变量描述
  154. model_info['_ModelInputsOutputs'] = dict()
  155. model_info['_ModelInputsOutputs']['test_inputs'] = [
  156. [k, v.name] for k, v in self.test_inputs.items()
  157. ]
  158. model_info['_ModelInputsOutputs']['test_outputs'] = [
  159. [k, v.name] for k, v in self.test_outputs.items()
  160. ]
  161. with open(
  162. osp.join(save_dir, 'model.yml'), encoding='utf-8',
  163. mode='w') as f:
  164. yaml.dump(model_info, f)
  165. def net_initialize(self,
  166. startup_prog=None,
  167. pretrain_weights=None,
  168. fuse_bn=False,
  169. save_dir='.',
  170. sensitivities_file=None,
  171. eval_metric_loss=0.05):
  172. pretrain_dir = osp.join(save_dir, 'pretrain')
  173. if not os.path.isdir(pretrain_dir):
  174. if os.path.exists(pretrain_dir):
  175. os.remove(pretrain_dir)
  176. os.makedirs(pretrain_dir)
  177. if hasattr(self, 'backbone'):
  178. backbone = self.backbone
  179. else:
  180. backbone = self.__class__.__name__
  181. pretrain_weights = get_pretrain_weights(
  182. pretrain_weights, self.model_type, backbone, pretrain_dir)
  183. if startup_prog is None:
  184. startup_prog = fluid.default_startup_program()
  185. self.exe.run(startup_prog)
  186. if pretrain_weights is not None:
  187. logging.info(
  188. "Load pretrain weights from {}.".format(pretrain_weights))
  189. paddlex.utils.utils.load_pretrain_weights(
  190. self.exe, self.train_prog, pretrain_weights, fuse_bn)
  191. # 进行裁剪
  192. if sensitivities_file is not None:
  193. from .slim.prune_config import get_sensitivities
  194. sensitivities_file = get_sensitivities(sensitivities_file, self,
  195. save_dir)
  196. from .slim.prune import get_params_ratios, prune_program
  197. prune_params_ratios = get_params_ratios(
  198. sensitivities_file, eval_metric_loss=eval_metric_loss)
  199. prune_program(self, prune_params_ratios)
  200. self.status = 'Prune'
  201. def resume_checkpoint(self, path, startup_prog=None):
  202. if not osp.isdir(path):
  203. raise Exception("Model pretrain path {} does not "
  204. "exists.".format(path))
  205. if osp.exists(osp.join(path, 'model.pdparams')):
  206. path = osp.join(path, 'model')
  207. if startup_prog is None:
  208. startup_prog = fluid.default_startup_program()
  209. self.exe.run(startup_prog)
  210. fluid.load(self.train_prog, path, executor=self.exe)
  211. def get_model_info(self):
  212. info = dict()
  213. info['version'] = paddlex.__version__
  214. info['Model'] = self.__class__.__name__
  215. info['_Attributes'] = {'model_type': self.model_type}
  216. if 'self' in self.init_params:
  217. del self.init_params['self']
  218. if '__class__' in self.init_params:
  219. del self.init_params['__class__']
  220. info['_init_params'] = self.init_params
  221. info['_Attributes']['num_classes'] = self.num_classes
  222. info['_Attributes']['labels'] = self.labels
  223. try:
  224. primary_metric_key = list(self.eval_metrics.keys())[0]
  225. primary_metric_value = float(self.eval_metrics[primary_metric_key])
  226. info['_Attributes']['eval_metrics'] = {
  227. primary_metric_key: primary_metric_value
  228. }
  229. except:
  230. pass
  231. if hasattr(self.test_transforms, 'to_rgb'):
  232. if self.test_transforms.to_rgb:
  233. info['TransformsMode'] = 'RGB'
  234. else:
  235. info['TransformsMode'] = 'BGR'
  236. if hasattr(self, 'test_transforms'):
  237. if self.test_transforms is not None:
  238. info['Transforms'] = list()
  239. for op in self.test_transforms.transforms:
  240. name = op.__class__.__name__
  241. attr = op.__dict__
  242. info['Transforms'].append({name: attr})
  243. return info
  244. def save_model(self, save_dir):
  245. if not osp.isdir(save_dir):
  246. if osp.exists(save_dir):
  247. os.remove(save_dir)
  248. os.makedirs(save_dir)
  249. if self.train_prog is not None:
  250. fluid.save(self.train_prog, osp.join(save_dir, 'model'))
  251. else:
  252. fluid.save(self.test_prog, osp.join(save_dir, 'model'))
  253. model_info = self.get_model_info()
  254. model_info['status'] = self.status
  255. with open(
  256. osp.join(save_dir, 'model.yml'), encoding='utf-8',
  257. mode='w') as f:
  258. yaml.dump(model_info, f)
  259. # 评估结果保存
  260. if hasattr(self, 'eval_details'):
  261. with open(osp.join(save_dir, 'eval_details.json'), 'w') as f:
  262. json.dump(self.eval_details, f)
  263. if self.status == 'Prune':
  264. # 保存裁剪的shape
  265. shapes = {}
  266. for block in self.train_prog.blocks:
  267. for param in block.all_parameters():
  268. pd_var = fluid.global_scope().find_var(param.name)
  269. pd_param = pd_var.get_tensor()
  270. shapes[param.name] = np.array(pd_param).shape
  271. with open(
  272. osp.join(save_dir, 'prune.yml'), encoding='utf-8',
  273. mode='w') as f:
  274. yaml.dump(shapes, f)
  275. # 模型保存成功的标志
  276. open(osp.join(save_dir, '.success'), 'w').close()
  277. logging.info("Model saved in {}.".format(save_dir))
  278. def export_inference_model(self, save_dir):
  279. test_input_names = [
  280. var.name for var in list(self.test_inputs.values())
  281. ]
  282. test_outputs = list(self.test_outputs.values())
  283. if self.__class__.__name__ == 'MaskRCNN':
  284. from paddlex.utils.save import save_mask_inference_model
  285. save_mask_inference_model(
  286. dirname=save_dir,
  287. executor=self.exe,
  288. params_filename='__params__',
  289. feeded_var_names=test_input_names,
  290. target_vars=test_outputs,
  291. main_program=self.test_prog)
  292. else:
  293. fluid.io.save_inference_model(
  294. dirname=save_dir,
  295. executor=self.exe,
  296. params_filename='__params__',
  297. feeded_var_names=test_input_names,
  298. target_vars=test_outputs,
  299. main_program=self.test_prog)
  300. model_info = self.get_model_info()
  301. model_info['status'] = 'Infer'
  302. # 保存模型输出的变量描述
  303. model_info['_ModelInputsOutputs'] = dict()
  304. model_info['_ModelInputsOutputs']['test_inputs'] = [
  305. [k, v.name] for k, v in self.test_inputs.items()
  306. ]
  307. model_info['_ModelInputsOutputs']['test_outputs'] = [
  308. [k, v.name] for k, v in self.test_outputs.items()
  309. ]
  310. with open(
  311. osp.join(save_dir, 'model.yml'), encoding='utf-8',
  312. mode='w') as f:
  313. yaml.dump(model_info, f)
  314. # 模型保存成功的标志
  315. open(osp.join(save_dir, '.success'), 'w').close()
  316. logging.info(
  317. "Model for inference deploy saved in {}.".format(save_dir))
  318. def train_loop(self,
  319. num_epochs,
  320. train_dataset,
  321. train_batch_size,
  322. start_epoch=0,
  323. eval_dataset=None,
  324. save_interval_epochs=1,
  325. log_interval_steps=10,
  326. save_dir='output',
  327. use_vdl=False,
  328. early_stop=False,
  329. early_stop_patience=5):
  330. if not osp.isdir(save_dir):
  331. if osp.exists(save_dir):
  332. os.remove(save_dir)
  333. os.makedirs(save_dir)
  334. if use_vdl:
  335. from visualdl import LogWriter
  336. vdl_logdir = osp.join(save_dir, 'vdl_log')
  337. # 给transform添加arrange操作
  338. self.arrange_transforms(
  339. transforms=train_dataset.transforms, mode='train')
  340. # 构建train_data_loader
  341. self.build_train_data_loader(
  342. dataset=train_dataset, batch_size=train_batch_size)
  343. if eval_dataset is not None:
  344. self.eval_transforms = eval_dataset.transforms
  345. self.test_transforms = copy.deepcopy(eval_dataset.transforms)
  346. # 获取实时变化的learning rate
  347. lr = self.optimizer._learning_rate
  348. if isinstance(lr, fluid.framework.Variable):
  349. self.train_outputs['lr'] = lr
  350. # 在多卡上跑训练
  351. if self.parallel_train_prog is None:
  352. build_strategy = fluid.compiler.BuildStrategy()
  353. build_strategy.fuse_all_optimizer_ops = False
  354. if paddlex.env_info['place'] != 'cpu' and len(self.places) > 1:
  355. build_strategy.sync_batch_norm = self.sync_bn
  356. exec_strategy = fluid.ExecutionStrategy()
  357. exec_strategy.num_iteration_per_drop_scope = 1
  358. self.parallel_train_prog = fluid.CompiledProgram(
  359. self.train_prog).with_data_parallel(
  360. loss_name=self.train_outputs['loss'].name,
  361. build_strategy=build_strategy,
  362. exec_strategy=exec_strategy)
  363. total_num_steps = math.floor(
  364. train_dataset.num_samples / train_batch_size)
  365. num_steps = 0
  366. time_stat = list()
  367. time_train_one_epoch = None
  368. time_eval_one_epoch = None
  369. total_num_steps_eval = 0
  370. # 模型总共的评估次数
  371. total_eval_times = math.ceil(num_epochs / save_interval_epochs)
  372. # 检测目前仅支持单卡评估,训练数据batch大小与显卡数量之商为验证数据batch大小。
  373. eval_batch_size = train_batch_size
  374. if self.model_type == 'detector':
  375. eval_batch_size = self._get_single_card_bs(train_batch_size)
  376. if eval_dataset is not None:
  377. total_num_steps_eval = math.ceil(
  378. eval_dataset.num_samples / eval_batch_size)
  379. if use_vdl:
  380. # VisualDL component
  381. log_writer = LogWriter(vdl_logdir, sync_cycle=20)
  382. train_step_component = OrderedDict()
  383. eval_component = OrderedDict()
  384. thresh = 0.0001
  385. if early_stop:
  386. earlystop = EarlyStop(early_stop_patience, thresh)
  387. best_accuracy_key = ""
  388. best_accuracy = -1.0
  389. best_model_epoch = 1
  390. for i in range(start_epoch, num_epochs):
  391. records = list()
  392. step_start_time = time.time()
  393. epoch_start_time = time.time()
  394. for step, data in enumerate(self.train_data_loader()):
  395. outputs = self.exe.run(
  396. self.parallel_train_prog,
  397. feed=data,
  398. fetch_list=list(self.train_outputs.values()))
  399. outputs_avg = np.mean(np.array(outputs), axis=1)
  400. records.append(outputs_avg)
  401. # 训练完成剩余时间预估
  402. current_time = time.time()
  403. step_cost_time = current_time - step_start_time
  404. step_start_time = current_time
  405. if len(time_stat) < 20:
  406. time_stat.append(step_cost_time)
  407. else:
  408. time_stat[num_steps % 20] = step_cost_time
  409. # 每间隔log_interval_steps,输出loss信息
  410. num_steps += 1
  411. if num_steps % log_interval_steps == 0:
  412. step_metrics = OrderedDict(
  413. zip(list(self.train_outputs.keys()), outputs_avg))
  414. if use_vdl:
  415. for k, v in step_metrics.items():
  416. if k not in train_step_component.keys():
  417. with log_writer.mode('Each_Step_while_Training'
  418. ) as step_logger:
  419. train_step_component[
  420. k] = step_logger.scalar(
  421. 'Training: {}'.format(k))
  422. train_step_component[k].add_record(num_steps, v)
  423. # 估算剩余时间
  424. avg_step_time = np.mean(time_stat)
  425. if time_train_one_epoch is not None:
  426. eta = (num_epochs - i - 1) * time_train_one_epoch + (
  427. total_num_steps - step - 1) * avg_step_time
  428. else:
  429. eta = ((num_epochs - i) * total_num_steps - step -
  430. 1) * avg_step_time
  431. if time_eval_one_epoch is not None:
  432. eval_eta = (total_eval_times - i //
  433. save_interval_epochs) * time_eval_one_epoch
  434. else:
  435. eval_eta = (
  436. total_eval_times - i // save_interval_epochs
  437. ) * total_num_steps_eval * avg_step_time
  438. eta_str = seconds_to_hms(eta + eval_eta)
  439. logging.info(
  440. "[TRAIN] Epoch={}/{}, Step={}/{}, {}, time_each_step={}s, eta={}"
  441. .format(i + 1, num_epochs, step + 1, total_num_steps,
  442. dict2str(step_metrics), round(
  443. avg_step_time, 2), eta_str))
  444. train_metrics = OrderedDict(
  445. zip(list(self.train_outputs.keys()), np.mean(records, axis=0)))
  446. logging.info('[TRAIN] Epoch {} finished, {} .'.format(
  447. i + 1, dict2str(train_metrics)))
  448. time_train_one_epoch = time.time() - epoch_start_time
  449. epoch_start_time = time.time()
  450. # 每间隔save_interval_epochs, 在验证集上评估和对模型进行保存
  451. eval_epoch_start_time = time.time()
  452. if (i + 1) % save_interval_epochs == 0 or i == num_epochs - 1:
  453. current_save_dir = osp.join(save_dir, "epoch_{}".format(i + 1))
  454. if not osp.isdir(current_save_dir):
  455. os.makedirs(current_save_dir)
  456. if eval_dataset is not None:
  457. self.eval_metrics, self.eval_details = self.evaluate(
  458. eval_dataset=eval_dataset,
  459. batch_size=eval_batch_size,
  460. epoch_id=i + 1,
  461. return_details=True)
  462. logging.info('[EVAL] Finished, Epoch={}, {} .'.format(
  463. i + 1, dict2str(self.eval_metrics)))
  464. # 保存最优模型
  465. best_accuracy_key = list(self.eval_metrics.keys())[0]
  466. current_accuracy = self.eval_metrics[best_accuracy_key]
  467. if current_accuracy > best_accuracy:
  468. best_accuracy = current_accuracy
  469. best_model_epoch = i + 1
  470. best_model_dir = osp.join(save_dir, "best_model")
  471. self.save_model(save_dir=best_model_dir)
  472. if use_vdl:
  473. for k, v in self.eval_metrics.items():
  474. if isinstance(v, list):
  475. continue
  476. if isinstance(v, np.ndarray):
  477. if v.size > 1:
  478. continue
  479. if k not in eval_component:
  480. with log_writer.mode('Each_Epoch_on_Eval_Data'
  481. ) as eval_logger:
  482. eval_component[k] = eval_logger.scalar(
  483. 'Evaluation: {}'.format(k))
  484. eval_component[k].add_record(i + 1, v)
  485. self.save_model(save_dir=current_save_dir)
  486. time_eval_one_epoch = time.time() - eval_epoch_start_time
  487. eval_epoch_start_time = time.time()
  488. logging.info(
  489. 'Current evaluated best model in eval_dataset is epoch_{}, {}={}'
  490. .format(best_model_epoch, best_accuracy_key,
  491. best_accuracy))
  492. if eval_dataset is not None and early_stop:
  493. if earlystop(current_accuracy):
  494. break