| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950 |
- # 环境变量配置,用于控制是否使用GPU
- # 说明文档:https://paddlex.readthedocs.io/zh_CN/develop/appendix/parameters.html#gpu
- import os
- os.environ['CUDA_VISIBLE_DEVICES'] = '0'
- import numpy as np
- import cv2
- from PIL import Image
- from collections import OrderedDict
- import paddlex as pdx
- import paddlex.utils.logging as logging
- from paddlex.cv.models.utils.seg_eval import ConfusionMatrix
- # 导入模型参数
- model = pdx.load_model('output/deeplabv3p_mobilenetv3_large_ssld/best_model')
- # 指定待评估图像路径及其标注文件路径
- img_file = "dataset/JPEGImages/5.png"
- label_file = "dataset/Annotations/5_class.png"
- # 定义用于计算miou、iou、macc、acc、kapp指标的混淆矩阵类
- conf_mat = ConfusionMatrix(model.num_classes, streaming=True)
- # 使用"无重叠的大图切小图"方式进行预测:将大图像切分成互不重叠多个小块,分别对每个小块进行预测
- # 最后将小块预测结果拼接成大图预测结果
- # API说明:https://paddlex.readthedocs.io/zh_CN/develop/apis/models/semantic_segmentation.html#tile-predict
- # tile_predict = model.tile_predict(img_file=img_file, tile_size=(769, 769))
- # pred = tile_predict["label_map"]
- # 使用"有重叠的大图切小图"策略进行预测:将大图像切分成相互重叠的多个小块,
- # 分别对每个小块进行预测,将小块预测结果的中间部分拼接成大图预测结果
- # API说明:https://paddlex.readthedocs.io/zh_CN/develop/apis/models/semantic_segmentation.html#overlap-tile-predict
- overlap_tile_predict = model.overlap_tile_predict(
- img_file=img_file, tile_size=(769, 769))
- pred = overlap_tile_predict["label_map"]
- # 更新混淆矩阵
- pred = pred[np.newaxis, :, :, np.newaxis]
- pred = pred.astype(np.int64)
- label = np.asarray(Image.open("dataset/Annotations/5_class.png"))
- label = label[np.newaxis, np.newaxis, :, :]
- mask = label != model.ignore_index
- conf_mat.calculate(pred=pred, label=label, ignore=mask)
- # 计算miou、iou、macc、acc、kapp
- category_iou, miou = conf_mat.mean_iou()
- category_acc, macc = conf_mat.accuracy()
- logging.info(
- "miou={:.6f} category_iou={} macc={:.6f} category_acc={} kappa={:.6f}".
- format(miou, category_iou, macc, category_acc, conf_mat.kappa()))
|