eval.py 2.2 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950
  1. # 环境变量配置,用于控制是否使用GPU
  2. # 说明文档:https://paddlex.readthedocs.io/zh_CN/develop/appendix/parameters.html#gpu
  3. import os
  4. os.environ['CUDA_VISIBLE_DEVICES'] = '0'
  5. import numpy as np
  6. import cv2
  7. from PIL import Image
  8. from collections import OrderedDict
  9. import paddlex as pdx
  10. import paddlex.utils.logging as logging
  11. from paddlex.cv.models.utils.seg_eval import ConfusionMatrix
  12. # 导入模型参数
  13. model = pdx.load_model('output/deeplabv3p_mobilenetv3_large_ssld/best_model')
  14. # 指定待评估图像路径及其标注文件路径
  15. img_file = "dataset/JPEGImages/5.png"
  16. label_file = "dataset/Annotations/5_class.png"
  17. # 定义用于计算miou、iou、macc、acc、kapp指标的混淆矩阵类
  18. conf_mat = ConfusionMatrix(model.num_classes, streaming=True)
  19. # 使用"无重叠的大图切小图"方式进行预测:将大图像切分成互不重叠多个小块,分别对每个小块进行预测
  20. # 最后将小块预测结果拼接成大图预测结果
  21. # API说明:https://paddlex.readthedocs.io/zh_CN/develop/apis/models/semantic_segmentation.html#tile-predict
  22. # tile_predict = model.tile_predict(img_file=img_file, tile_size=(769, 769))
  23. # pred = tile_predict["label_map"]
  24. # 使用"有重叠的大图切小图"策略进行预测:将大图像切分成相互重叠的多个小块,
  25. # 分别对每个小块进行预测,将小块预测结果的中间部分拼接成大图预测结果
  26. # API说明:https://paddlex.readthedocs.io/zh_CN/develop/apis/models/semantic_segmentation.html#overlap-tile-predict
  27. overlap_tile_predict = model.overlap_tile_predict(
  28. img_file=img_file, tile_size=(769, 769))
  29. pred = overlap_tile_predict["label_map"]
  30. # 更新混淆矩阵
  31. pred = pred[np.newaxis, :, :, np.newaxis]
  32. pred = pred.astype(np.int64)
  33. label = np.asarray(Image.open("dataset/Annotations/5_class.png"))
  34. label = label[np.newaxis, np.newaxis, :, :]
  35. mask = label != model.ignore_index
  36. conf_mat.calculate(pred=pred, label=label, ignore=mask)
  37. # 计算miou、iou、macc、acc、kapp
  38. category_iou, miou = conf_mat.mean_iou()
  39. category_acc, macc = conf_mat.accuracy()
  40. logging.info(
  41. "miou={:.6f} category_iou={} macc={:.6f} category_acc={} kappa={:.6f}".
  42. format(miou, category_iou, macc, category_acc, conf_mat.kappa()))