| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- import json
- import time
- import tarfile
- from pathlib import Path
- import paddle
- from ..base import BaseTrainer, BaseTrainDeamon
- from ...utils.config import AttrDict
- from .model_list import MODELS
- class TSCLSTrainer(BaseTrainer):
- """TS Classification Model Trainer"""
- entities = MODELS
- def build_deamon(self, config: AttrDict) -> "TSCLSTrainDeamon":
- """build deamon thread for saving training outputs timely
- Args:
- config (AttrDict): PaddleX pipeline config, which is loaded from pipeline yaml file.
- Returns:
- TSCLSTrainDeamon: the training deamon thread object for saving training outputs timely.
- """
- return TSCLSTrainDeamon(config)
- def train(self):
- """firstly, update and dump train config, then train model"""
- # XXX: using super().train() instead when the train_hook() is supported.
- os.makedirs(self.global_config.output, exist_ok=True)
- self.update_config()
- self.dump_config()
- train_result = self.pdx_model.train(**self.get_train_kwargs())
- assert (
- train_result.returncode == 0
- ), f"Encountered an unexpected error({train_result.returncode}) in \
- training!"
- self.make_tar_file()
- self.deamon.stop()
- def make_tar_file(self):
- """make tar file to package the training outputs"""
- tar_path = Path(self.global_config.output) / "best_accuracy.pdparams.tar"
- with tarfile.open(tar_path, "w") as tar:
- tar.add(self.global_config.output, arcname="best_accuracy.pdparams")
- def update_config(self):
- """update training config"""
- self.pdx_config.update_dataset(self.global_config.dataset_dir, "TSCLSDataset")
- if self.train_config.time_col is not None:
- self.pdx_config.update_basic_info({"time_col": self.train_config.time_col})
- if self.train_config.target_cols is not None:
- self.pdx_config.update_basic_info(
- {"target_cols": self.train_config.target_cols.split(",")}
- )
- if self.train_config.group_id is not None:
- self.pdx_config.update_basic_info({"group_id": self.train_config.group_id})
- if self.train_config.static_cov_cols is not None:
- self.pdx_config.update_basic_info(
- {"static_cov_cols": self.train_config.static_cov_cols}
- )
- if self.train_config.freq is not None:
- try:
- self.train_config.freq = int(self.train_config.freq)
- except ValueError:
- pass
- self.pdx_config.update_basic_info({"freq": self.train_config.freq})
- if self.train_config.batch_size is not None:
- self.pdx_config.update_batch_size(self.train_config.batch_size)
- if self.train_config.learning_rate is not None:
- self.pdx_config.update_learning_rate(self.train_config.learning_rate)
- if self.train_config.epochs_iters is not None:
- self.pdx_config.update_epochs(self.train_config.epochs_iters)
- if self.global_config.output is not None:
- self.pdx_config.update_save_dir(self.global_config.output)
- def get_train_kwargs(self) -> dict:
- """get key-value arguments of model training function
- Returns:
- dict: the arguments of training function.
- """
- train_args = {"device": self.get_device()}
- if self.global_config.output is not None:
- train_args["save_dir"] = self.global_config.output
- return train_args
- class TSCLSTrainDeamon(BaseTrainDeamon):
- """TSCLSTrainResultDemon"""
- def get_watched_model(self):
- """get the models needed to be watched"""
- watched_models = []
- watched_models.append("best")
- return watched_models
- def update(self):
- """update train result json"""
- self.processing = True
- for i, result in enumerate(self.results):
- self.results[i] = self.update_result(result, self.train_outputs[i])
- self.save_json()
- self.processing = False
- def update_train_log(self, train_output):
- """update train log"""
- train_log_path = train_output / "train_ct.log"
- with open(train_log_path, "w") as f:
- seconds = time.time()
- f.write(
- "current training time: "
- + time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(seconds))
- )
- f.close()
- return train_log_path
- def update_result(self, result, train_output):
- """update every result"""
- train_output = Path(train_output).resolve()
- config_path = Path(train_output).joinpath("config.yaml").resolve()
- if not config_path.exists():
- return result
- model_name = result["model_name"]
- if (
- model_name in self.config_recorder
- and self.config_recorder[model_name] != config_path
- ):
- result["models"] = self.init_model_pkg()
- result["config"] = config_path
- self.config_recorder[model_name] = config_path
- result["config"] = config_path
- result["train_log"] = self.update_train_log(train_output)
- result["visualdl_log"] = self.update_vdl_log(train_output)
- result["label_dict"] = self.update_label_dict(train_output)
- model = self.get_model(result["model_name"], config_path)
- self.update_models(result, model, train_output, "best")
- return result
- def update_models(self, result, model, train_output, model_key):
- """update info of the models to be saved"""
- pdparams = Path(train_output).joinpath("best_accuracy.pdparams.tar")
- if pdparams.exists():
- score = self.get_score(Path(train_output).joinpath("score.json"))
- result["models"][model_key] = {
- "score": "%.3f" % score,
- "pdparams": pdparams,
- "pdema": "",
- "pdopt": "",
- "pdstates": "",
- "inference_config": "",
- "pdmodel": "",
- "pdiparams": pdparams,
- "pdiparams.info": "",
- }
- self.update_inference_model(
- model,
- train_output,
- train_output.joinpath(f"inference"),
- result["models"][model_key],
- )
- def update_inference_model(
- self, model, weight_path, export_save_dir, result_the_model
- ):
- """update inference model"""
- export_save_dir.mkdir(parents=True, exist_ok=True)
- export_result = model.export(weight_path=weight_path, save_dir=export_save_dir)
- if export_result.returncode == 0:
- inference_config = export_save_dir.joinpath("inference.yml")
- if not inference_config.exists():
- inference_config = ""
- use_pir = (
- hasattr(paddle.framework, "use_pir_api")
- and paddle.framework.use_pir_api()
- )
- pdmodel = (
- export_save_dir.joinpath("inference.json")
- if use_pir
- else export_save_dir.joinpath("inference.pdmodel")
- )
- pdiparams = export_save_dir.joinpath("inference.pdiparams")
- pdiparams_info = (
- "" if use_pir else export_save_dir.joinpath("inference.pdiparams.info")
- )
- else:
- inference_config = ""
- pdmodel = ""
- pdiparams = ""
- pdiparams_info = ""
- result_the_model["inference_config"] = inference_config
- result_the_model["pdmodel"] = pdmodel
- result_the_model["pdiparams"] = pdiparams
- result_the_model["pdiparams.info"] = pdiparams_info
- def get_score(self, score_path):
- """get the score by pdstates file"""
- if not Path(score_path).exists():
- return 0
- return json.load(open(score_path))["metric"]
- def get_best_ckp_prefix(self):
- """get the prefix of the best checkpoint file"""
- pass
- def get_epoch_id_by_pdparams_prefix(self):
- """get the epoch_id by pdparams file"""
- pass
- def get_ith_ckp_prefix(self):
- """get the prefix of the epoch_id checkpoint file"""
- pass
- def get_the_pdema_suffix(self):
- """get the suffix of pdema file"""
- pass
- def get_the_pdopt_suffix(self):
- """get the suffix of pdopt file"""
- pass
- def get_the_pdparams_suffix(self):
- """get the suffix of pdparams file"""
- pass
- def get_the_pdstates_suffix(self):
- """get the suffix of pdstates file"""
- pass
|