| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from abc import abstractmethod
- from ....utils.subclass_register import AutoRegisterABCMetaClass
- from ....utils.func_register import FuncRegister
- from ....utils import logging
- from ...components.base import BaseComponent, ComponentsEngine
- from ...utils.pp_option import PaddlePredictorOption
- from ...utils.process_hook import generatorable_method
- from ..utils.predict_set import DeviceSetMixin, PPOptionSetMixin, BatchSizeSetMixin
- from .base_predictor import BasePredictor
- class BasicPredictor(
- BasePredictor,
- DeviceSetMixin,
- PPOptionSetMixin,
- BatchSizeSetMixin,
- metaclass=AutoRegisterABCMetaClass,
- ):
- __is_base = True
- def __init__(
- self, model_dir, config=None, device=None, pp_option=None, **option_kwargs
- ):
- super().__init__(model_dir=model_dir, config=config)
- self._pred_set_func_map = {}
- self._pred_set_register = FuncRegister(self._pred_set_func_map)
- self._pred_set_register("device")(self.set_device)
- self._pred_set_register("pp_option")(self.set_pp_option)
- self._pred_set_register("batch_size")(self.set_batch_size)
- self.pp_option = (
- pp_option
- if pp_option
- else PaddlePredictorOption(model_name=self.model_name, **option_kwargs)
- )
- self.pp_option.set_device(device)
- self.components = {}
- self._build_components()
- self.engine = ComponentsEngine(self.components)
- logging.debug(f"{self.__class__.__name__}: {self.model_dir}")
- def apply(self, x):
- """predict"""
- yield from self._generate_res(self.engine(x))
- @generatorable_method
- def _generate_res(self, batch_data):
- return [{"result": self._pack_res(data)} for data in batch_data]
- def _add_component(self, cmps):
- if not isinstance(cmps, list):
- cmps = [cmps]
- for cmp in cmps:
- if not isinstance(cmp, (list, tuple)):
- key = cmp.name
- else:
- assert len(cmp) == 2
- key = cmp[0]
- cmp = cmp[1]
- assert isinstance(key, str)
- assert isinstance(cmp, BaseComponent)
- assert (
- key not in self.components
- ), f"The key ({key}) has been used: {self.components}!"
- self.components[key] = cmp
- def set_predictor(self, **kwargs):
- for k in kwargs:
- assert (
- k in self._pred_set_func_map
- ), f"The arg({k}) is not supported to specify in predict() func! Only supports: {self._pred_set_func_map.keys()}"
- self._pred_set_func_map[k](kwargs[k])
- @abstractmethod
- def _build_components(self):
- raise NotImplementedError
- @abstractmethod
- def _pack_res(self, data):
- raise NotImplementedError
|