trainer.py 2.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import os
  15. from pathlib import Path
  16. import lazy_paddle as paddle
  17. from ..base import BaseTrainer
  18. from ...utils.config import AttrDict
  19. from .model_list import MODELS
  20. class TextDetTrainer(BaseTrainer):
  21. """Text Detection Model Trainer"""
  22. entities = MODELS
  23. def update_config(self):
  24. """update training config"""
  25. if self.train_config.log_interval:
  26. self.pdx_config.update_log_interval(self.train_config.log_interval)
  27. if self.train_config.eval_interval:
  28. self.pdx_config._update_eval_interval_by_epoch(
  29. self.train_config.eval_interval
  30. )
  31. if self.train_config.save_interval:
  32. self.pdx_config.update_save_interval(self.train_config.save_interval)
  33. self.pdx_config.update_dataset(self.global_config.dataset_dir, "TextDetDataset")
  34. if self.train_config.pretrain_weight_path:
  35. self.pdx_config.update_pretrained_weights(
  36. self.train_config.pretrain_weight_path
  37. )
  38. if self.train_config.batch_size is not None:
  39. self.pdx_config.update_batch_size(self.train_config.batch_size)
  40. if self.train_config.learning_rate is not None:
  41. self.pdx_config.update_learning_rate(self.train_config.learning_rate)
  42. if self.train_config.epochs_iters is not None:
  43. self.pdx_config._update_epochs(self.train_config.epochs_iters)
  44. if (
  45. self.train_config.resume_path is not None
  46. and self.train_config.resume_path != ""
  47. ):
  48. self.pdx_config._update_checkpoints(self.train_config.resume_path)
  49. if self.global_config.output is not None:
  50. self.pdx_config._update_output_dir(self.global_config.output)
  51. def get_train_kwargs(self) -> dict:
  52. """get key-value arguments of model training function
  53. Returns:
  54. dict: the arguments of training function.
  55. """
  56. return {
  57. "device": self.get_device(),
  58. "dy2st": self.train_config.get("dy2st", False),
  59. }