| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from typing import Any, Dict, Optional
- import numpy as np
- from ..layout_parsing.utils import get_sub_regions_ocr_res
- from ..components import convert_points_to_boxes
- from .result import SingleTableRecognitionResult
- from ..ocr.result import OCRResult
- def get_ori_image_coordinate(x: int, y: int, box_list: list) -> list:
- """
- get the original coordinate from Cropped image to Original image.
- Args:
- x (int): x coordinate of cropped image
- y (int): y coordinate of cropped image
- box_list (list): list of table bounding boxes, eg. [[x1, y1, x2, y2, x3, y3, x4, y4]]
- Returns:
- list: list of original coordinates, eg. [[x1, y1, x2, y2, x3, y3, x4, y4]]
- """
- if not box_list:
- return box_list
- offset = np.array([x, y] * 4)
- box_list = np.array(box_list)
- if box_list.shape[-1] == 2:
- offset = offset.reshape(4, 2)
- ori_box_list = offset + box_list
- return ori_box_list
- def convert_table_structure_pred_bbox(
- table_structure_pred: Dict, crop_start_point: list, img_shape: tuple
- ) -> None:
- """
- Convert the predicted table structure bounding boxes to the original image coordinate system.
- Args:
- table_structure_pred (Dict): A dictionary containing the predicted table structure, including bounding boxes ('bbox').
- crop_start_point (list): A list of two integers representing the starting point (x, y) of the cropped image region.
- img_shape (tuple): A tuple of two integers representing the shape (height, width) of the original image.
- Returns:
- None: The function modifies the 'table_structure_pred' dictionary in place by adding the 'cell_box_list' key.
- """
- cell_points_list = table_structure_pred["bbox"]
- ori_cell_points_list = get_ori_image_coordinate(
- crop_start_point[0], crop_start_point[1], cell_points_list
- )
- ori_cell_points_list = np.reshape(ori_cell_points_list, (-1, 4, 2))
- cell_box_list = convert_points_to_boxes(ori_cell_points_list)
- img_height, img_width = img_shape
- cell_box_list = np.clip(
- cell_box_list, 0, [img_width, img_height, img_width, img_height]
- )
- table_structure_pred["cell_box_list"] = cell_box_list
- return
- def distance(box_1: list, box_2: list) -> float:
- """
- compute the distance between two boxes
- Args:
- box_1 (list): first rectangle box,eg.(x1, y1, x2, y2)
- box_2 (list): second rectangle box,eg.(x1, y1, x2, y2)
- Returns:
- float: the distance between two boxes
- """
- x1, y1, x2, y2 = box_1
- x3, y3, x4, y4 = box_2
- dis = abs(x3 - x1) + abs(y3 - y1) + abs(x4 - x2) + abs(y4 - y2)
- dis_2 = abs(x3 - x1) + abs(y3 - y1)
- dis_3 = abs(x4 - x2) + abs(y4 - y2)
- return dis + min(dis_2, dis_3)
- def compute_iou(rec1: list, rec2: list) -> float:
- """
- computing IoU
- Args:
- rec1 (list): (x1, y1, x2, y2)
- rec2 (list): (x1, y1, x2, y2)
- Returns:
- float: Intersection over Union
- """
- # computing area of each rectangles
- S_rec1 = (rec1[2] - rec1[0]) * (rec1[3] - rec1[1])
- S_rec2 = (rec2[2] - rec2[0]) * (rec2[3] - rec2[1])
- # computing the sum_area
- sum_area = S_rec1 + S_rec2
- # find the each edge of intersect rectangle
- left_line = max(rec1[0], rec2[0])
- right_line = min(rec1[2], rec2[2])
- top_line = max(rec1[1], rec2[1])
- bottom_line = min(rec1[3], rec2[3])
- # judge if there is an intersect
- if left_line >= right_line or top_line >= bottom_line:
- return 0.0
- else:
- intersect = (right_line - left_line) * (bottom_line - top_line)
- return (intersect / (sum_area - intersect)) * 1.0
- def _whether_y_overlap_exceeds_threshold(bbox1, bbox2, overlap_ratio_threshold=0.6):
- """
- Determines whether the vertical overlap between two bounding boxes exceeds a given threshold.
- Args:
- bbox1 (tuple): The first bounding box defined as (left, top, right, bottom).
- bbox2 (tuple): The second bounding box defined as (left, top, right, bottom).
- overlap_ratio_threshold (float): The threshold ratio to determine if the overlap is significant.
- Defaults to 0.6.
- Returns:
- bool: True if the vertical overlap divided by the minimum height of the two bounding boxes
- exceeds the overlap_ratio_threshold, otherwise False.
- """
- _, y1_0, _, y1_1 = bbox1
- _, y2_0, _, y2_1 = bbox2
- overlap = max(0, min(y1_1, y2_1) - max(y1_0, y2_0))
- min_height = min(y1_1 - y1_0, y2_1 - y2_0)
- return (overlap / min_height) > overlap_ratio_threshold
- def _sort_box_by_y_projection(boxes, line_height_iou_threshold=0.6):
- """
- Sorts a list of bounding boxes based on their spatial arrangement.
- The function first sorts the boxes by their top y-coordinate to group them into lines.
- Within each line, the boxes are then sorted by their x-coordinate.
- Args:
- boxes (list): A list of bounding boxes, where each box is defined as [left, top, right, bottom].
- line_height_iou_threshold (float): The Intersection over Union (IoU) threshold for grouping boxes into the same line.
- Returns:
- list: A list of indices representing the order of the boxes after sorting by their spatial arrangement.
- """
- if not boxes:
- return []
- indexed_boxes = list(enumerate(boxes))
- indexed_boxes.sort(key=lambda item: item[1][1])
- lines = []
- first_index, first_box = indexed_boxes[0]
- current_line = [(first_index, first_box)]
- current_y0, current_y1 = first_box[1], first_box[3]
- for index, box in indexed_boxes[1:]:
- y0, y1 = box[1], box[3]
- if _whether_y_overlap_exceeds_threshold(
- (0, current_y0, 0, current_y1),
- (0, y0, 0, y1),
- line_height_iou_threshold,
- ):
- current_line.append((index, box))
- current_y0 = min(current_y0, y0)
- current_y1 = max(current_y1, y1)
- else:
- lines.append(current_line)
- current_line = [(index, box)]
- current_y0, current_y1 = y0, y1
- if current_line:
- lines.append(current_line)
- for line in lines:
- line.sort(key=lambda item: item[1][0])
- sorted_indices = [index for line in lines for index, _ in line]
- return sorted_indices
- def match_table_and_ocr(
- cell_box_list: list, ocr_dt_boxes: list, cell_sort_by_y_projection: bool = False
- ) -> dict:
- """
- match table and ocr
- Args:
- cell_box_list (list): bbox for table cell, 2 points, [left, top, right, bottom]
- ocr_dt_boxes (list): bbox for ocr, 2 points, [left, top, right, bottom]
- cell_sort_by_y_projection (bool): Whether to sort the matched OCR boxes by y-projection.
- Returns:
- dict: matched dict, key is table index, value is ocr index
- """
- matched = {}
- for i, ocr_box in enumerate(np.array(ocr_dt_boxes)):
- ocr_box = ocr_box.astype(np.float32)
- distances = []
- for j, table_box in enumerate(cell_box_list):
- distances.append(
- (distance(table_box, ocr_box), 1.0 - compute_iou(table_box, ocr_box))
- ) # compute iou and l1 distance
- sorted_distances = distances.copy()
- # select det box by iou and l1 distance
- sorted_distances = sorted(sorted_distances, key=lambda item: (item[1], item[0]))
- if distances.index(sorted_distances[0]) not in matched.keys():
- matched[distances.index(sorted_distances[0])] = [i]
- else:
- matched[distances.index(sorted_distances[0])].append(i)
- if cell_sort_by_y_projection:
- for cell_index in matched:
- input_boxes = [ocr_dt_boxes[i] for i in matched[cell_index]]
- sorted_indices = _sort_box_by_y_projection(input_boxes, 0.7)
- sorted_indices = [matched[cell_index][i] for i in sorted_indices]
- matched[cell_index] = sorted_indices
- return matched
- def get_html_result(
- matched_index: dict, ocr_contents: dict, pred_structures: list
- ) -> str:
- """
- Generates HTML content based on the matched index, OCR contents, and predicted structures.
- Args:
- matched_index (dict): A dictionary containing matched indices.
- ocr_contents (dict): A dictionary of OCR contents.
- pred_structures (list): A list of predicted HTML structures.
- Returns:
- str: Generated HTML content as a string.
- """
- pred_html = []
- td_index = 0
- head_structure = pred_structures[0:3]
- html = "".join(head_structure)
- table_structure = pred_structures[3:-3]
- for tag in table_structure:
- if "</td>" in tag:
- if "<td></td>" == tag:
- pred_html.extend("<td>")
- if td_index in matched_index.keys():
- b_with = False
- if (
- "<b>" in ocr_contents[matched_index[td_index][0]]
- and len(matched_index[td_index]) > 1
- ):
- b_with = True
- pred_html.extend("<b>")
- for i, td_index_index in enumerate(matched_index[td_index]):
- content = ocr_contents[td_index_index]
- if len(matched_index[td_index]) > 1:
- if len(content) == 0:
- continue
- if content[0] == " ":
- content = content[1:]
- if "<b>" in content:
- content = content[3:]
- if "</b>" in content:
- content = content[:-4]
- if len(content) == 0:
- continue
- if i != len(matched_index[td_index]) - 1 and " " != content[-1]:
- content += " "
- pred_html.extend(content)
- if b_with:
- pred_html.extend("</b>")
- if "<td></td>" == tag:
- pred_html.append("</td>")
- else:
- pred_html.append(tag)
- td_index += 1
- else:
- pred_html.append(tag)
- html += "".join(pred_html)
- end_structure = pred_structures[-3:]
- html += "".join(end_structure)
- return html
- def get_table_recognition_res(
- table_box: list,
- table_structure_pred: dict,
- overall_ocr_res: OCRResult,
- cells_texts_list: list,
- use_table_cells_ocr_results: bool,
- cell_sort_by_y_projection: bool = False,
- ) -> SingleTableRecognitionResult:
- """
- Retrieve table recognition result from cropped image info, table structure prediction, and overall OCR result.
- Args:
- table_box (list): Information about the location of cropped image, including the bounding box.
- table_structure_pred (dict): Predicted table structure.
- overall_ocr_res (OCRResult): Overall OCR result from the input image.
- cells_texts_list (list): OCR results with cells.
- use_table_cells_ocr_results (bool): whether to use OCR results with cells.
- cell_sort_by_y_projection (bool): Whether to sort the matched OCR boxes by y-projection.
- Returns:
- SingleTableRecognitionResult: An object containing the single table recognition result.
- """
- table_box = np.array([table_box])
- table_ocr_pred = get_sub_regions_ocr_res(overall_ocr_res, table_box)
- crop_start_point = [table_box[0][0], table_box[0][1]]
- img_shape = overall_ocr_res["doc_preprocessor_res"]["output_img"].shape[0:2]
- if len(table_structure_pred['bbox']) == 0 or len(table_ocr_pred["rec_boxes"]) == 0:
- pred_html = ' '.join(list(table_structure_pred["structure"]))
- if len(table_structure_pred['bbox']) != 0:
- convert_table_structure_pred_bbox(table_structure_pred, crop_start_point, img_shape)
- table_cells_result = table_structure_pred["cell_box_list"]
- else:
- table_cells_result = []
- single_img_res = {
- "cell_box_list": table_cells_result,
- "table_ocr_pred": table_ocr_pred,
- "pred_html": pred_html,
- }
- return SingleTableRecognitionResult(single_img_res)
- convert_table_structure_pred_bbox(table_structure_pred, crop_start_point, img_shape)
- structures = table_structure_pred["structure"]
- cell_box_list = table_structure_pred["cell_box_list"]
- if use_table_cells_ocr_results == True:
- ocr_dt_boxes = cell_box_list
- ocr_texts_res = cells_texts_list
- else:
- ocr_dt_boxes = table_ocr_pred["rec_boxes"]
- ocr_texts_res = table_ocr_pred["rec_texts"]
- matched_index = match_table_and_ocr(
- cell_box_list, ocr_dt_boxes, cell_sort_by_y_projection=cell_sort_by_y_projection
- )
- pred_html = get_html_result(matched_index, ocr_texts_res, structures)
- single_img_res = {
- "cell_box_list": cell_box_list,
- "table_ocr_pred": table_ocr_pred,
- "pred_html": pred_html,
- }
- return SingleTableRecognitionResult(single_img_res)
|