Deeplabv3-R101.yaml 1.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657
  1. batch_size: 2
  2. iters: 80000
  3. train_dataset:
  4. type: Cityscapes
  5. dataset_root: data/cityscapes
  6. transforms:
  7. - type: ResizeStepScaling
  8. min_scale_factor: 0.5
  9. max_scale_factor: 2.0
  10. scale_step_size: 0.25
  11. - type: RandomPaddingCrop
  12. crop_size: [1024, 512]
  13. - type: RandomHorizontalFlip
  14. - type: RandomDistort
  15. brightness_range: 0.4
  16. contrast_range: 0.4
  17. saturation_range: 0.4
  18. - type: Normalize
  19. mode: train
  20. val_dataset:
  21. type: Cityscapes
  22. dataset_root: data/cityscapes
  23. transforms:
  24. - type: Normalize
  25. mode: val
  26. optimizer:
  27. type: SGD
  28. momentum: 0.9
  29. weight_decay: 4.0e-5
  30. lr_scheduler:
  31. type: PolynomialDecay
  32. learning_rate: 0.01
  33. end_lr: 0
  34. power: 0.9
  35. loss:
  36. types:
  37. - type: CrossEntropyLoss
  38. coef: [1]
  39. model:
  40. type: DeepLabV3
  41. backbone:
  42. type: ResNet101_vd
  43. output_stride: 8
  44. multi_grid: [1, 2, 4]
  45. pretrained: https://bj.bcebos.com/paddleseg/dygraph/resnet101_vd_ssld.tar.gz
  46. backbone_indices: [3]
  47. aspp_ratios: [1, 12, 24, 36]
  48. aspp_out_channels: 256
  49. align_corners: False
  50. pretrained: null