PP-LiteSeg-T.yaml 1.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566
  1. batch_size: 4
  2. iters: 160000
  3. train_dataset:
  4. type: Dataset
  5. dataset_root: datasets/Cityscapes
  6. train_path: datasets/Cityscapes/train.txt
  7. num_classes: 19
  8. transforms:
  9. - type: ResizeStepScaling
  10. min_scale_factor: 0.125
  11. max_scale_factor: 1.5
  12. scale_step_size: 0.125
  13. - type: RandomPaddingCrop
  14. crop_size: [1024, 512]
  15. - type: RandomHorizontalFlip
  16. - type: RandomDistort
  17. brightness_range: 0.5
  18. contrast_range: 0.5
  19. saturation_range: 0.5
  20. - type: Normalize
  21. mode: train
  22. val_dataset:
  23. type: Dataset
  24. dataset_root: datasets/Cityscapes
  25. val_path: datasets/Cityscapes/val.txt
  26. num_classes: 19
  27. transforms:
  28. - type: Normalize
  29. mode: val
  30. model:
  31. type: PPLiteSeg
  32. backbone:
  33. type: STDC1
  34. pretrained: https://bj.bcebos.com/paddleseg/dygraph/PP_STDCNet1.tar.gz
  35. arm_out_chs: [32, 64, 128]
  36. seg_head_inter_chs: [32, 64, 64]
  37. optimizer:
  38. type: SGD
  39. momentum: 0.9
  40. weight_decay: 5.0e-4
  41. lr_scheduler:
  42. type: PolynomialDecay
  43. learning_rate: 0.005
  44. end_lr: 0
  45. power: 0.9
  46. warmup_iters: 1000
  47. warmup_start_lr: 1.0e-5
  48. loss:
  49. types:
  50. - type: OhemCrossEntropyLoss
  51. min_kept: 130000 # batch_size * 1024 * 512 // 16
  52. - type: OhemCrossEntropyLoss
  53. min_kept: 130000
  54. - type: OhemCrossEntropyLoss
  55. min_kept: 130000
  56. coef: [1, 1, 1]
  57. test_config:
  58. aug_eval: True
  59. scales: 0.5