| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657 |
- import os
- # 选择使用0号卡
- os.environ['CUDA_VISIBLE_DEVICES'] = '0'
- import paddlex as pdx
- from paddlex.seg import transforms
- # 下载和解压人像分割数据集
- human_seg_data = 'https://paddlex.bj.bcebos.com/humanseg/data/human_seg_data.zip'
- pdx.utils.download_and_decompress(human_seg_data, path='./')
- # 下载和解压人像分割预训练模型
- pretrain_weights = 'https://paddleseg.bj.bcebos.com/humanseg/models/humanseg_mobile_ckpt.zip'
- pdx.utils.download_and_decompress(
- pretrain_weights, path='./output/human_seg/pretrain')
- # 定义训练和验证时的transforms
- train_transforms = transforms.Compose([
- transforms.Resize([192, 192]), transforms.RandomHorizontalFlip(),
- transforms.Normalize()
- ])
- eval_transforms = transforms.Compose(
- [transforms.Resize([192, 192]), transforms.Normalize()])
- # 定义训练和验证所用的数据集
- # API说明: https://paddlex.readthedocs.io/zh_CN/latest/apis/datasets/semantic_segmentation.html#segdataset
- train_dataset = pdx.datasets.SegDataset(
- data_dir='human_seg_data',
- file_list='human_seg_data/train_list.txt',
- label_list='human_seg_data/labels.txt',
- transforms=train_transforms,
- shuffle=True)
- eval_dataset = pdx.datasets.SegDataset(
- data_dir='human_seg_data',
- file_list='human_seg_data/val_list.txt',
- label_list='human_seg_data/labels.txt',
- transforms=eval_transforms)
- # 初始化模型,并进行训练
- # 可使用VisualDL查看训练指标
- # VisualDL启动方式: visualdl --logdir output/unet/vdl_log --port 8001
- # 浏览器打开 https://0.0.0.0:8001即可
- # 其中0.0.0.0为本机访问,如为远程服务, 改成相应机器IP
- # https://paddlex.readthedocs.io/zh_CN/latest/apis/models/semantic_segmentation.html#hrnet
- num_classes = len(train_dataset.labels)
- model = pdx.seg.HRNet(num_classes=num_classes, width='18_small_v1')
- model.train(
- num_epochs=10,
- train_dataset=train_dataset,
- train_batch_size=8,
- eval_dataset=eval_dataset,
- learning_rate=0.001,
- pretrain_weights='./output/human_seg/pretrain/humanseg_mobile_ckpt',
- save_dir='output/human_seg',
- use_vdl=True)
|