train.py 2.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657
  1. import os
  2. # 选择使用0号卡
  3. os.environ['CUDA_VISIBLE_DEVICES'] = '0'
  4. import paddlex as pdx
  5. from paddlex.seg import transforms
  6. # 下载和解压人像分割数据集
  7. human_seg_data = 'https://paddlex.bj.bcebos.com/humanseg/data/human_seg_data.zip'
  8. pdx.utils.download_and_decompress(human_seg_data, path='./')
  9. # 下载和解压人像分割预训练模型
  10. pretrain_weights = 'https://paddleseg.bj.bcebos.com/humanseg/models/humanseg_mobile_ckpt.zip'
  11. pdx.utils.download_and_decompress(
  12. pretrain_weights, path='./output/human_seg/pretrain')
  13. # 定义训练和验证时的transforms
  14. train_transforms = transforms.Compose([
  15. transforms.Resize([192, 192]), transforms.RandomHorizontalFlip(),
  16. transforms.Normalize()
  17. ])
  18. eval_transforms = transforms.Compose(
  19. [transforms.Resize([192, 192]), transforms.Normalize()])
  20. # 定义训练和验证所用的数据集
  21. # API说明: https://paddlex.readthedocs.io/zh_CN/latest/apis/datasets/semantic_segmentation.html#segdataset
  22. train_dataset = pdx.datasets.SegDataset(
  23. data_dir='human_seg_data',
  24. file_list='human_seg_data/train_list.txt',
  25. label_list='human_seg_data/labels.txt',
  26. transforms=train_transforms,
  27. shuffle=True)
  28. eval_dataset = pdx.datasets.SegDataset(
  29. data_dir='human_seg_data',
  30. file_list='human_seg_data/val_list.txt',
  31. label_list='human_seg_data/labels.txt',
  32. transforms=eval_transforms)
  33. # 初始化模型,并进行训练
  34. # 可使用VisualDL查看训练指标
  35. # VisualDL启动方式: visualdl --logdir output/unet/vdl_log --port 8001
  36. # 浏览器打开 https://0.0.0.0:8001即可
  37. # 其中0.0.0.0为本机访问,如为远程服务, 改成相应机器IP
  38. # https://paddlex.readthedocs.io/zh_CN/latest/apis/models/semantic_segmentation.html#hrnet
  39. num_classes = len(train_dataset.labels)
  40. model = pdx.seg.HRNet(num_classes=num_classes, width='18_small_v1')
  41. model.train(
  42. num_epochs=10,
  43. train_dataset=train_dataset,
  44. train_batch_size=8,
  45. eval_dataset=eval_dataset,
  46. learning_rate=0.001,
  47. pretrain_weights='./output/human_seg/pretrain/humanseg_mobile_ckpt',
  48. save_dir='output/human_seg',
  49. use_vdl=True)