prune.py 2.5 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465
  1. import paddlex as pdx
  2. from paddlex import transforms as T
  3. # 定义训练和验证时的transforms
  4. # API说明:https://github.com/PaddlePaddle/PaddleX/blob/release/2.0-rc/paddlex/cv/transforms/operators.py
  5. train_transforms = T.Compose([
  6. T.MixupImage(mixup_epoch=250), T.RandomDistort(),
  7. T.RandomExpand(im_padding_value=[123.675, 116.28, 103.53]), T.RandomCrop(),
  8. T.RandomHorizontalFlip(), T.BatchRandomResize(
  9. target_sizes=[320, 352, 384, 416, 448, 480, 512, 544, 576, 608],
  10. interp='RANDOM'), T.Normalize(
  11. mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
  12. ])
  13. eval_transforms = T.Compose([
  14. T.Resize(
  15. 608, interp='CUBIC'), T.Normalize(
  16. mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
  17. ])
  18. # 定义训练和验证所用的数据集
  19. # API说明:https://github.com/PaddlePaddle/PaddleX/blob/release/2.0-rc/paddlex/cv/datasets/voc.py#L29
  20. train_dataset = pdx.datasets.VOCDetection(
  21. data_dir='dataset',
  22. file_list='dataset/train_list.txt',
  23. label_list='dataset/labels.txt',
  24. transforms=train_transforms,
  25. shuffle=True)
  26. eval_dataset = pdx.datasets.VOCDetection(
  27. data_dir='dataset',
  28. file_list='dataset/val_list.txt',
  29. label_list='dataset/labels.txt',
  30. transforms=eval_transforms,
  31. shuffle=False)
  32. # 加载模型
  33. model = pdx.load_model('output/yolov3_darknet53/best_model')
  34. # Step 1/3: 分析模型各层参数在不同的剪裁比例下的敏感度
  35. # API说明:https://github.com/PaddlePaddle/PaddleX/blob/95c53dec89ab0f3769330fa445c6d9213986ca5f/paddlex/cv/models/base.py#L352
  36. model.analyze_sensitivity(
  37. dataset=eval_dataset,
  38. batch_size=1,
  39. save_dir='output/yolov3_darknet53/prune')
  40. # Step 2/3: 根据选择的FLOPs减小比例对模型进行剪裁
  41. # API说明:https://github.com/PaddlePaddle/PaddleX/blob/95c53dec89ab0f3769330fa445c6d9213986ca5f/paddlex/cv/models/base.py#L394
  42. model.prune(pruned_flops=.2)
  43. # Step 3/3: 对剪裁后的模型重新训练
  44. # API说明:https://github.com/PaddlePaddle/PaddleX/blob/release/2.0-rc/paddlex/cv/models/detector.py#L154
  45. # 各参数介绍与调整说明:https://paddlex.readthedocs.io/zh_CN/develop/appendix/parameters.html
  46. model.train(
  47. num_epochs=270,
  48. train_dataset=train_dataset,
  49. train_batch_size=8,
  50. eval_dataset=eval_dataset,
  51. learning_rate=0.001 / 8,
  52. warmup_steps=1000,
  53. warmup_start_lr=0.0,
  54. save_interval_epochs=5,
  55. lr_decay_epochs=[216, 243],
  56. pretrain_weights=None,
  57. save_dir='output/yolov3_darknet53/prune')