| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import errno
- import os
- import re
- import shutil
- import tempfile
- import paddle
- from paddlex.ppcls.utils import logger
- from .download import get_weights_path_from_url
- __all__ = ['init_model', 'save_model', 'load_dygraph_pretrain']
- def _mkdir_if_not_exist(path):
- """
- mkdir if not exists, ignore the exception when multiprocess mkdir together
- """
- if not os.path.exists(path):
- try:
- os.makedirs(path)
- except OSError as e:
- if e.errno == errno.EEXIST and os.path.isdir(path):
- logger.warning(
- 'be happy if some process has already created {}'.format(
- path))
- else:
- raise OSError('Failed to mkdir {}'.format(path))
- def load_dygraph_pretrain(model, path=None):
- if not (os.path.isdir(path) or os.path.exists(path + '.pdparams')):
- raise ValueError("Model pretrain path {} does not "
- "exists.".format(path))
- param_state_dict = paddle.load(path + ".pdparams")
- model.set_dict(param_state_dict)
- return
- def load_dygraph_pretrain_from_url(model, pretrained_url, use_ssld=False):
- if use_ssld:
- pretrained_url = pretrained_url.replace("_pretrained",
- "_ssld_pretrained")
- local_weight_path = get_weights_path_from_url(pretrained_url).replace(
- ".pdparams", "")
- load_dygraph_pretrain(model, path=local_weight_path)
- return
- def load_distillation_model(model, pretrained_model):
- logger.info("In distillation mode, teacher model will be "
- "loaded firstly before student model.")
- if not isinstance(pretrained_model, list):
- pretrained_model = [pretrained_model]
- teacher = model.teacher if hasattr(model,
- "teacher") else model._layers.teacher
- student = model.student if hasattr(model,
- "student") else model._layers.student
- load_dygraph_pretrain(teacher, path=pretrained_model[0])
- logger.info("Finish initing teacher model from {}".format(
- pretrained_model))
- # load student model
- if len(pretrained_model) >= 2:
- load_dygraph_pretrain(student, path=pretrained_model[1])
- logger.info("Finish initing student model from {}".format(
- pretrained_model))
- def init_model(config, net, optimizer=None):
- """
- load model from checkpoint or pretrained_model
- """
- checkpoints = config.get('checkpoints')
- if checkpoints and optimizer is not None:
- assert os.path.exists(checkpoints + ".pdparams"), \
- "Given dir {}.pdparams not exist.".format(checkpoints)
- assert os.path.exists(checkpoints + ".pdopt"), \
- "Given dir {}.pdopt not exist.".format(checkpoints)
- para_dict = paddle.load(checkpoints + ".pdparams")
- opti_dict = paddle.load(checkpoints + ".pdopt")
- metric_dict = paddle.load(checkpoints + ".pdstates")
- net.set_dict(para_dict)
- optimizer.set_state_dict(opti_dict)
- logger.info("Finish load checkpoints from {}".format(checkpoints))
- return metric_dict
- pretrained_model = config.get('pretrained_model')
- use_distillation = config.get('use_distillation', False)
- if pretrained_model:
- if use_distillation:
- load_distillation_model(net, pretrained_model)
- else: # common load
- load_dygraph_pretrain(net, path=pretrained_model)
- logger.info(
- logger.coloring("Finish load pretrained model from {}".format(
- pretrained_model), "HEADER"))
- def save_model(net,
- optimizer,
- metric_info,
- model_path,
- model_name="",
- prefix='ppcls'):
- """
- save model to the target path
- """
- if paddle.distributed.get_rank() != 0:
- return
- model_path = os.path.join(model_path, model_name)
- _mkdir_if_not_exist(model_path)
- model_path = os.path.join(model_path, prefix)
- paddle.save(net.state_dict(), model_path + ".pdparams")
- paddle.save(optimizer.state_dict(), model_path + ".pdopt")
- paddle.save(metric_info, model_path + ".pdstates")
- logger.info("Already save model in {}".format(model_path))
|