| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960 |
- # 环境变量配置,用于控制是否使用GPU
- # 说明文档:https://paddlex.readthedocs.io/zh_CN/develop/appendix/parameters.html#gpu
- import os
- os.environ['CUDA_VISIBLE_DEVICES'] = '0'
- from paddlex.det import transforms
- import paddlex as pdx
- # 下载和解压昆虫检测数据集
- insect_dataset = 'https://bj.bcebos.com/paddlex/datasets/insect_det.tar.gz'
- pdx.utils.download_and_decompress(insect_dataset, path='./')
- # 定义训练和验证时的transforms
- # API说明 https://paddlex.readthedocs.io/zh_CN/develop/apis/transforms/det_transforms.html
- train_transforms = transforms.Compose([
- transforms.RandomHorizontalFlip(), transforms.Normalize(),
- transforms.ResizeByShort(
- short_size=800, max_size=1333), transforms.Padding(coarsest_stride=32)
- ])
- eval_transforms = transforms.Compose([
- transforms.Normalize(),
- transforms.ResizeByShort(
- short_size=800, max_size=1333),
- transforms.Padding(coarsest_stride=32),
- ])
- # 定义训练和验证所用的数据集
- # API说明:https://paddlex.readthedocs.io/zh_CN/develop/apis/datasets.html#paddlex-datasets-vocdetection
- train_dataset = pdx.datasets.VOCDetection(
- data_dir='insect_det',
- file_list='insect_det/train_list.txt',
- label_list='insect_det/labels.txt',
- transforms=train_transforms,
- shuffle=True)
- eval_dataset = pdx.datasets.VOCDetection(
- data_dir='insect_det',
- file_list='insect_det/val_list.txt',
- label_list='insect_det/labels.txt',
- transforms=eval_transforms)
- # 初始化模型,并进行训练
- # 可使用VisualDL查看训练指标,参考https://paddlex.readthedocs.io/zh_CN/develop/train/visualdl.html
- # num_classes 需要设置为包含背景类的类别数,即: 目标类别数量 + 1
- num_classes = len(train_dataset.labels) + 1
- # API说明: https://paddlex.readthedocs.io/zh_CN/develop/apis/models/detection.html#paddlex-det-fasterrcnn
- model = pdx.det.FasterRCNN(num_classes=num_classes, backbone='ResNet18')
- # API说明: https://paddlex.readthedocs.io/zh_CN/develop/apis/models/detection.html#id5
- # 各参数介绍与调整说明:https://paddlex.readthedocs.io/zh_CN/develop/appendix/parameters.html
- model.train(
- num_epochs=12,
- train_dataset=train_dataset,
- train_batch_size=2,
- eval_dataset=eval_dataset,
- learning_rate=0.0025,
- lr_decay_epochs=[8, 11],
- save_dir='output/faster_rcnn_r50_fpn',
- use_vdl=True)
|