unet_train.py 1.8 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152
  1. import paddlex as pdx
  2. from paddlex import transforms as T
  3. # 下载和解压视盘分割数据集
  4. optic_dataset = 'https://bj.bcebos.com/paddlex/datasets/optic_disc_seg.tar.gz'
  5. pdx.utils.download_and_decompress(optic_dataset, path='./')
  6. # 定义训练和验证时的transforms
  7. # API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/apis/transforms/transforms.md
  8. train_transforms = T.Compose([
  9. T.Resize(target_size=512),
  10. T.RandomHorizontalFlip(),
  11. T.Normalize(
  12. mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
  13. ])
  14. eval_transforms = T.Compose([
  15. T.Resize(target_size=512),
  16. T.Normalize(
  17. mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
  18. ])
  19. # 定义训练和验证所用的数据集
  20. # API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/apis/datasets.md
  21. train_dataset = pdx.datasets.SegDataset(
  22. data_dir='optic_disc_seg',
  23. file_list='optic_disc_seg/train_list.txt',
  24. label_list='optic_disc_seg/labels.txt',
  25. transforms=train_transforms,
  26. shuffle=True)
  27. eval_dataset = pdx.datasets.SegDataset(
  28. data_dir='optic_disc_seg',
  29. file_list='optic_disc_seg/val_list.txt',
  30. label_list='optic_disc_seg/labels.txt',
  31. transforms=eval_transforms,
  32. shuffle=False)
  33. # 初始化模型,并进行训练
  34. # 可使用VisualDL查看训练指标,参考https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/visualdl.md
  35. num_classes = len(train_dataset.labels)
  36. model = pdx.seg.UNet(num_classes=num_classes)
  37. # API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/apis/models/semantic_segmentation.md
  38. # 各参数介绍与调整说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/parameters.md
  39. model.train(
  40. num_epochs=10,
  41. train_dataset=train_dataset,
  42. train_batch_size=4,
  43. eval_dataset=eval_dataset,
  44. learning_rate=0.01,
  45. save_dir='output/unet')