pplcnet.py 1.9 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950
  1. import paddlex as pdx
  2. from paddlex import transforms as T
  3. # 下载和解压蔬菜分类数据集
  4. veg_dataset = 'https://bj.bcebos.com/paddlex/datasets/vegetables_cls.tar.gz'
  5. pdx.utils.download_and_decompress(veg_dataset, path='./')
  6. # 定义训练和验证时的transforms
  7. # API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/apis/transforms/transforms.md
  8. train_transforms = T.Compose(
  9. [T.RandomCrop(crop_size=224), T.RandomHorizontalFlip(), T.Normalize()])
  10. eval_transforms = T.Compose([
  11. T.ResizeByShort(short_size=256), T.CenterCrop(crop_size=224), T.Normalize()
  12. ])
  13. # 定义训练和验证所用的数据集
  14. # API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/apis/datasets.md
  15. train_dataset = pdx.datasets.ImageNet(
  16. data_dir='vegetables_cls',
  17. file_list='vegetables_cls/train_list.txt',
  18. label_list='vegetables_cls/labels.txt',
  19. transforms=train_transforms,
  20. shuffle=True)
  21. eval_dataset = pdx.datasets.ImageNet(
  22. data_dir='vegetables_cls',
  23. file_list='vegetables_cls/val_list.txt',
  24. label_list='vegetables_cls/labels.txt',
  25. transforms=eval_transforms)
  26. # 初始化模型,并进行训练
  27. # 可使用VisualDL查看训练指标,参考https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/visualdl.md
  28. num_classes = len(train_dataset.labels)
  29. model = pdx.cls.PPLCNet(num_classes=num_classes, scale=1)
  30. # API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/apis/models/classification.md
  31. # 各参数介绍与调整说明:https://github.com/PaddlePaddle/PaddleX/tree/develop/docs/parameters.md
  32. model.train(
  33. num_epochs=10,
  34. pretrain_weights='IMAGENET',
  35. train_dataset=train_dataset,
  36. train_batch_size=64,
  37. eval_dataset=eval_dataset,
  38. lr_decay_epochs=[4, 6, 8],
  39. learning_rate=0.1,
  40. save_dir='output/pplcnet',
  41. log_interval_steps=10,
  42. label_smoothing=.1,
  43. use_vdl=True)