| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950 |
- import paddlex as pdx
- from paddlex import transforms as T
- # 下载和解压蔬菜分类数据集
- veg_dataset = 'https://bj.bcebos.com/paddlex/datasets/vegetables_cls.tar.gz'
- pdx.utils.download_and_decompress(veg_dataset, path='./')
- # 定义训练和验证时的transforms
- # API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/apis/transforms/transforms.md
- train_transforms = T.Compose(
- [T.RandomCrop(crop_size=224), T.RandomHorizontalFlip(), T.Normalize()])
- eval_transforms = T.Compose([
- T.ResizeByShort(short_size=256), T.CenterCrop(crop_size=224), T.Normalize()
- ])
- # 定义训练和验证所用的数据集
- # API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/apis/datasets.md
- train_dataset = pdx.datasets.ImageNet(
- data_dir='vegetables_cls',
- file_list='vegetables_cls/train_list.txt',
- label_list='vegetables_cls/labels.txt',
- transforms=train_transforms,
- shuffle=True)
- eval_dataset = pdx.datasets.ImageNet(
- data_dir='vegetables_cls',
- file_list='vegetables_cls/val_list.txt',
- label_list='vegetables_cls/labels.txt',
- transforms=eval_transforms)
- # 初始化模型,并进行训练
- # 可使用VisualDL查看训练指标,参考https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/visualdl.md
- num_classes = len(train_dataset.labels)
- model = pdx.cls.PPLCNet(num_classes=num_classes, scale=1)
- # API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/apis/models/classification.md
- # 各参数介绍与调整说明:https://github.com/PaddlePaddle/PaddleX/tree/develop/docs/parameters.md
- model.train(
- num_epochs=10,
- pretrain_weights='IMAGENET',
- train_dataset=train_dataset,
- train_batch_size=64,
- eval_dataset=eval_dataset,
- lr_decay_epochs=[4, 6, 8],
- learning_rate=0.1,
- save_dir='output/pplcnet',
- log_interval_steps=10,
- label_smoothing=.1,
- use_vdl=True)
|