picodet.py 2.1 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859
  1. import paddlex as pdx
  2. from paddlex import transforms as T
  3. # 下载和解压昆虫检测数据集
  4. dataset = 'https://bj.bcebos.com/paddlex/datasets/insect_det.tar.gz'
  5. pdx.utils.download_and_decompress(dataset, path='./')
  6. # 定义训练和验证时的transforms
  7. # API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/apis/transforms/transforms.md
  8. train_transforms = T.Compose([
  9. T.RandomCrop(), T.RandomHorizontalFlip(), T.RandomDistort(),
  10. T.BatchRandomResize(
  11. target_sizes=[576, 608, 640, 672, 704], interp='RANDOM'), T.Normalize(
  12. mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
  13. ])
  14. eval_transforms = T.Compose([
  15. T.Resize(
  16. target_size=640, interp='CUBIC'), T.Normalize(
  17. mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
  18. ])
  19. # 定义训练和验证所用的数据集
  20. # API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/apis/datasets.md
  21. train_dataset = pdx.datasets.VOCDetection(
  22. data_dir='insect_det',
  23. file_list='insect_det/train_list.txt',
  24. label_list='insect_det/labels.txt',
  25. transforms=train_transforms,
  26. shuffle=True)
  27. eval_dataset = pdx.datasets.VOCDetection(
  28. data_dir='insect_det',
  29. file_list='insect_det/val_list.txt',
  30. label_list='insect_det/labels.txt',
  31. transforms=eval_transforms,
  32. shuffle=False)
  33. # 初始化模型,并进行训练
  34. # 可使用VisualDL查看训练指标,参考https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/visualdl.md
  35. num_classes = len(train_dataset.labels)
  36. model = pdx.det.PicoDet(num_classes=num_classes, backbone='ESNet_l')
  37. # API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/apis/models/detection.md
  38. # 各参数介绍与调整说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/parameters.md
  39. model.train(
  40. num_epochs=20,
  41. train_dataset=train_dataset,
  42. train_batch_size=14,
  43. eval_dataset=eval_dataset,
  44. pretrain_weights='COCO',
  45. learning_rate=.05,
  46. warmup_steps=24,
  47. warmup_start_lr=0.005,
  48. save_interval_epochs=1,
  49. lr_decay_epochs=[6, 8, 11],
  50. use_ema=True,
  51. save_dir='output/picodet_esnet_l',
  52. use_vdl=True)