pipeline.py 2.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from typing import Any, Dict, Optional, Union, List
  15. import numpy as np
  16. from ...utils.pp_option import PaddlePredictorOption
  17. from ..base import BasePipeline
  18. # [TODO] 待更新models_new到models
  19. from ...models_new.anomaly_detection.result import UadResult
  20. class AnomalyDetectionPipeline(BasePipeline):
  21. """Image AnomalyDetectionPipeline Pipeline"""
  22. entities = "anomaly_detection"
  23. def __init__(
  24. self,
  25. config: Dict,
  26. device: str = None,
  27. pp_option: PaddlePredictorOption = None,
  28. use_hpip: bool = False,
  29. ) -> None:
  30. """Initializes the image anomaly detection pipeline.
  31. Args:
  32. config (Dict): Configuration dictionary containing various settings.
  33. device (str, optional): Device to run the predictions on. Defaults to None.
  34. pp_option (PaddlePredictorOption, optional): PaddlePredictor options. Defaults to None.
  35. use_hpip (bool, optional): Whether to use high-performance inference (hpip) for prediction. Defaults to False.
  36. """
  37. super().__init__(device=device, pp_option=pp_option, use_hpip=use_hpip)
  38. anomaly_detetion_model_config = config["SubModules"]["AnomalyDetection"]
  39. self.anomaly_detetion_model = self.create_model(anomaly_detetion_model_config)
  40. def predict(
  41. self, input: Union[str, List[str], np.ndarray, List[np.ndarray]], **kwargs
  42. ) -> UadResult:
  43. """Predicts anomaly detection results for the given input.
  44. Args:
  45. input (Union[str, list[str], np.ndarray, list[np.ndarray]]): The input image(s) or path(s) to the images.
  46. **kwargs: Additional keyword arguments that can be passed to the function.
  47. Returns:
  48. UadResult: The predicted anomaly results.
  49. """
  50. yield from self.anomaly_detetion_model(input)