| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from typing import Any, Dict, Optional, Union, List
- import numpy as np
- from ...common.reader import ReadImage
- from ...common.batch_sampler import ImageBatchSampler
- from ...utils.pp_option import PaddlePredictorOption
- from ..base import BasePipeline
- # [TODO] 待更新models_new到models
- from ...models_new.image_classification.result import TopkResult
- class ImageClassificationPipeline(BasePipeline):
- """Image Classification Pipeline"""
- entities = "image_classification"
- def __init__(
- self,
- config: Dict,
- device: str = None,
- pp_option: PaddlePredictorOption = None,
- use_hpip: bool = False,
- ) -> None:
- """
- Initializes the class with given configurations and options.
- Args:
- config (Dict): Configuration dictionary containing model and other parameters.
- device (str): The device to run the prediction on. Default is None.
- pp_option (PaddlePredictorOption): Options for PaddlePaddle predictor. Default is None.
- use_hpip (bool): Whether to use high-performance inference (hpip) for prediction. Defaults to False.
- """
- super().__init__(device=device, pp_option=pp_option, use_hpip=use_hpip)
- image_classification_model_config = config["SubModules"]["ImageClassification"]
- model_kwargs = {}
- if (topk := image_classification_model_config.get("topk", None)) is not None:
- model_kwargs = {"topk": topk}
- self.image_classification_model = self.create_model(
- image_classification_model_config, **model_kwargs
- )
- self.topk = image_classification_model_config.get("topk", 5)
- def predict(
- self, input: Union[str, List[str], np.ndarray, List[np.ndarray]], **kwargs
- ) -> TopkResult:
- """Predicts image classification results for the given input.
- Args:
- input (Union[str, list[str], np.ndarray, list[np.ndarray]]): The input image(s) or path(s) to the images.
- **kwargs: Additional keyword arguments that can be passed to the function.
- Returns:
- TopkResult: The predicted top k results.
- """
- topk = kwargs.pop("topk", self.topk)
- yield from self.image_classification_model(input, topk=topk)
|