| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- __all__ = [
- "get_sub_regions_ocr_res",
- "get_layout_ordering",
- "recursive_img_array2path",
- "get_show_color",
- ]
- import numpy as np
- import copy
- import cv2
- import uuid
- from pathlib import Path
- from typing import List
- from ..ocr.result import OCRResult
- from ...models_new.object_detection.result import DetResult
- def get_overlap_boxes_idx(src_boxes: np.ndarray, ref_boxes: np.ndarray) -> List:
- """
- Get the indices of source boxes that overlap with reference boxes based on a specified threshold.
- Args:
- src_boxes (np.ndarray): A 2D numpy array of source bounding boxes.
- ref_boxes (np.ndarray): A 2D numpy array of reference bounding boxes.
- Returns:
- list: A list of indices of source boxes that overlap with any reference box.
- """
- match_idx_list = []
- src_boxes_num = len(src_boxes)
- if src_boxes_num > 0 and len(ref_boxes) > 0:
- for rno in range(len(ref_boxes)):
- ref_box = ref_boxes[rno]
- x1 = np.maximum(ref_box[0], src_boxes[:, 0])
- y1 = np.maximum(ref_box[1], src_boxes[:, 1])
- x2 = np.minimum(ref_box[2], src_boxes[:, 2])
- y2 = np.minimum(ref_box[3], src_boxes[:, 3])
- pub_w = x2 - x1
- pub_h = y2 - y1
- match_idx = np.where((pub_w > 3) & (pub_h > 3))[0]
- match_idx_list.extend(match_idx)
- return match_idx_list
- def get_sub_regions_ocr_res(
- overall_ocr_res: OCRResult, object_boxes: List, flag_within: bool = True
- ) -> OCRResult:
- """
- Filters OCR results to only include text boxes within specified object boxes based on a flag.
- Args:
- overall_ocr_res (OCRResult): The original OCR result containing all text boxes.
- object_boxes (list): A list of bounding boxes for the objects of interest.
- flag_within (bool): If True, only include text boxes within the object boxes. If False, exclude text boxes within the object boxes.
- Returns:
- OCRResult: A filtered OCR result containing only the relevant text boxes.
- """
- sub_regions_ocr_res = {}
- sub_regions_ocr_res["rec_polys"] = []
- sub_regions_ocr_res["rec_texts"] = []
- sub_regions_ocr_res["rec_scores"] = []
- sub_regions_ocr_res["rec_boxes"] = []
- overall_text_boxes = overall_ocr_res["rec_boxes"]
- match_idx_list = get_overlap_boxes_idx(overall_text_boxes, object_boxes)
- match_idx_list = list(set(match_idx_list))
- for box_no in range(len(overall_text_boxes)):
- if flag_within:
- if box_no in match_idx_list:
- flag_match = True
- else:
- flag_match = False
- else:
- if box_no not in match_idx_list:
- flag_match = True
- else:
- flag_match = False
- if flag_match:
- sub_regions_ocr_res["rec_polys"].append(
- overall_ocr_res["rec_polys"][box_no]
- )
- sub_regions_ocr_res["rec_texts"].append(
- overall_ocr_res["rec_texts"][box_no]
- )
- sub_regions_ocr_res["rec_scores"].append(
- overall_ocr_res["rec_scores"][box_no]
- )
- sub_regions_ocr_res["rec_boxes"].append(
- overall_ocr_res["rec_boxes"][box_no]
- )
- return sub_regions_ocr_res
- def calculate_iou(box1, box2):
- """
- Calculate Intersection over Union (IoU) between two bounding boxes.
- Args:
- box1, box2: Lists or tuples representing bounding boxes [x_min, y_min, x_max, y_max].
- Returns:
- float: The IoU value.
- """
- box1 = list(map(int, box1))
- box2 = list(map(int, box2))
- x1_min, y1_min, x1_max, y1_max = box1
- x2_min, y2_min, x2_max, y2_max = box2
- inter_x_min = max(x1_min, x2_min)
- inter_y_min = max(y1_min, y2_min)
- inter_x_max = min(x1_max, x2_max)
- inter_y_max = min(y1_max, y2_max)
- if inter_x_max <= inter_x_min or inter_y_max <= inter_y_min:
- return 0.0
- inter_area = (inter_x_max - inter_x_min) * (inter_y_max - inter_y_min)
- box1_area = (x1_max - x1_min) * (y1_max - y1_min)
- box2_area = (x2_max - x2_min) * (y2_max - y2_min)
- min_area = min(box1_area, box2_area)
- if min_area <= 0:
- return 0.0
- iou = inter_area / min_area
- return iou
- def _whether_overlaps_y_exceeds_threshold(bbox1, bbox2, overlap_ratio_threshold=0.6):
- _, y0_1, _, y1_1 = bbox1
- _, y0_2, _, y1_2 = bbox2
- overlap = max(0, min(y1_1, y1_2) - max(y0_1, y0_2))
- min_height = min(y1_1 - y0_1, y1_2 - y0_2)
- return (overlap / min_height) > overlap_ratio_threshold
- def _sort_box_by_y_projection(layout_bbox, ocr_res, line_height_threshold=0.7):
- assert ocr_res["boxes"] and ocr_res["rec_texts"]
- # span->line->block
- boxes = ocr_res["boxes"]
- rec_text = ocr_res["rec_texts"]
- x_min, x_max = layout_bbox[0], layout_bbox[2]
- spans = list(zip(boxes, rec_text))
- spans.sort(key=lambda span: span[0][1])
- spans = [list(span) for span in spans]
- lines = []
- first_span = spans[0]
- current_line = [first_span]
- current_y0, current_y1 = first_span[0][1], first_span[0][3]
- for span in spans[1:]:
- y0, y1 = span[0][1], span[0][3]
- if _whether_overlaps_y_exceeds_threshold(
- (0, current_y0, 0, current_y1),
- (0, y0, 0, y1),
- line_height_threshold,
- ):
- current_line.append(span)
- current_y0 = min(current_y0, y0)
- current_y1 = max(current_y1, y1)
- else:
- lines.append(current_line)
- current_line = [span]
- current_y0, current_y1 = y0, y1
- if current_line:
- lines.append(current_line)
- for line in lines:
- line.sort(key=lambda span: span[0][0])
- first_span = line[0]
- end_span = line[-1]
- if first_span[0][0] - x_min > 20:
- first_span[1] = "\n" + first_span[1]
- if x_max - end_span[0][2] > 20:
- end_span[1] = end_span[1] + "\n"
- ocr_res["boxes"] = [span[0] for line in lines for span in line]
- ocr_res["rec_texts"] = [span[1] + " " for line in lines for span in line]
- return ocr_res
- def get_structure_res(
- overall_ocr_res: OCRResult,
- layout_det_res: DetResult,
- table_res_list,
- ) -> OCRResult:
- """
- Extract structured information from OCR and layout detection results.
- Args:
- overall_ocr_res (OCRResult): An object containing the overall OCR results, including detected text boxes and recognized text. The structure is expected to have:
- - "input_img": The image on which OCR was performed.
- - "dt_boxes": A list of detected text box coordinates.
- - "rec_texts": A list of recognized text corresponding to the detected boxes.
- layout_det_res (DetResult): An object containing the layout detection results, including detected layout boxes and their labels. The structure is expected to have:
- - "boxes": A list of dictionaries with keys "coordinate" for box coordinates and "label" for the type of content.
- table_res_list (list): A list of table detection results, where each item is a dictionary containing:
- - "layout_bbox": The bounding box of the table layout.
- - "pred_html": The predicted HTML representation of the table.
- Returns:
- list: A list of structured boxes where each item is a dictionary containing:
- - "label": The label of the content (e.g., 'table', 'chart', 'image').
- - The label as a key with either table HTML or image data and text.
- - "layout_bbox": The coordinates of the layout box.
- """
- structure_boxes = []
- input_img = overall_ocr_res["doc_preprocessor_res"]["output_img"]
- for box_info in layout_det_res["boxes"]:
- layout_bbox = box_info["coordinate"]
- label = box_info["label"]
- rec_res = {"boxes": [], "rec_texts": [], "flag": False}
- seg_start_flag = True
- seg_end_flag = True
- if label == "table":
- for i, table_res in enumerate(table_res_list):
- if calculate_iou(layout_bbox, table_res["cell_box_list"][0]) > 0.5:
- structure_boxes.append(
- {
- "label": label,
- f"{label}": table_res["pred_html"],
- "layout_bbox": layout_bbox,
- "seg_start_flag": seg_start_flag,
- "seg_end_flag": seg_end_flag,
- },
- )
- del table_res_list[i]
- break
- else:
- overall_text_boxes = overall_ocr_res["rec_boxes"]
- for box_no in range(len(overall_text_boxes)):
- if calculate_iou(layout_bbox, overall_text_boxes[box_no]) > 0.5:
- rec_res["boxes"].append(overall_text_boxes[box_no])
- rec_res["rec_texts"].append(
- overall_ocr_res["rec_texts"][box_no],
- )
- rec_res["flag"] = True
- if rec_res["flag"]:
- rec_res = _sort_box_by_y_projection(layout_bbox, rec_res, 0.7)
- rec_res_first_bbox = rec_res["boxes"][0]
- rec_res_end_bbox = rec_res["boxes"][-1]
- if rec_res_first_bbox[0] - layout_bbox[0] < 20:
- seg_start_flag = False
- if layout_bbox[2] - rec_res_end_bbox[2] < 20:
- seg_end_flag = False
- if label == "formula":
- rec_res["rec_texts"] = [
- rec_res_text.replace("$", "")
- for rec_res_text in rec_res["rec_texts"]
- ]
- if label in ["chart", "image"]:
- structure_boxes.append(
- {
- "label": label,
- f"{label}": {
- "img": input_img[
- int(layout_bbox[1]) : int(layout_bbox[3]),
- int(layout_bbox[0]) : int(layout_bbox[2]),
- ],
- },
- "layout_bbox": layout_bbox,
- "seg_start_flag": seg_start_flag,
- "seg_end_flag": seg_end_flag,
- },
- )
- else:
- structure_boxes.append(
- {
- "label": label,
- f"{label}": "".join(rec_res["rec_texts"]),
- "layout_bbox": layout_bbox,
- "seg_start_flag": seg_start_flag,
- "seg_end_flag": seg_end_flag,
- },
- )
- return structure_boxes
- def projection_by_bboxes(boxes: np.ndarray, axis: int) -> np.ndarray:
- """
- Generate a 1D projection histogram from bounding boxes along a specified axis.
- Args:
- boxes: A (N, 4) array of bounding boxes defined by [x_min, y_min, x_max, y_max].
- axis: Axis for projection; 0 for horizontal (x-axis), 1 for vertical (y-axis).
- Returns:
- A 1D numpy array representing the projection histogram based on bounding box intervals.
- """
- assert axis in [0, 1]
- max_length = np.max(boxes[:, axis::2])
- projection = np.zeros(max_length, dtype=int)
- # Increment projection histogram over the interval defined by each bounding box
- for start, end in boxes[:, axis::2]:
- projection[start:end] += 1
- return projection
- def split_projection_profile(arr_values: np.ndarray, min_value: float, min_gap: float):
- """
- Split the projection profile into segments based on specified thresholds.
- Args:
- arr_values: 1D array representing the projection profile.
- min_value: Minimum value threshold to consider a profile segment significant.
- min_gap: Minimum gap width to consider a separation between segments.
- Returns:
- A tuple of start and end indices for each segment that meets the criteria.
- """
- # Identify indices where the projection exceeds the minimum value
- significant_indices = np.where(arr_values > min_value)[0]
- if not len(significant_indices):
- return
- # Calculate gaps between significant indices
- index_diffs = significant_indices[1:] - significant_indices[:-1]
- gap_indices = np.where(index_diffs > min_gap)[0]
- # Determine start and end indices of segments
- segment_starts = np.insert(
- significant_indices[gap_indices + 1],
- 0,
- significant_indices[0],
- )
- segment_ends = np.append(
- significant_indices[gap_indices],
- significant_indices[-1] + 1,
- )
- return segment_starts, segment_ends
- def recursive_yx_cut(boxes: np.ndarray, indices: List[int], res: List[int], min_gap=1):
- """
- Recursively project and segment bounding boxes, starting with Y-axis and followed by X-axis.
- Args:
- boxes: A (N, 4) array representing bounding boxes.
- indices: List of indices indicating the original position of boxes.
- res: List to store indices of the final segmented bounding boxes.
- """
- assert len(boxes) == len(indices)
- # Sort by y_min for Y-axis projection
- y_sorted_indices = boxes[:, 1].argsort()
- y_sorted_boxes = boxes[y_sorted_indices]
- y_sorted_indices = np.array(indices)[y_sorted_indices]
- # Perform Y-axis projection
- y_projection = projection_by_bboxes(boxes=y_sorted_boxes, axis=1)
- y_intervals = split_projection_profile(y_projection, 0, 1)
- if not y_intervals:
- return
- # Process each segment defined by Y-axis projection
- for y_start, y_end in zip(*y_intervals):
- # Select boxes within the current y interval
- y_interval_indices = (y_start <= y_sorted_boxes[:, 1]) & (
- y_sorted_boxes[:, 1] < y_end
- )
- y_boxes_chunk = y_sorted_boxes[y_interval_indices]
- y_indices_chunk = y_sorted_indices[y_interval_indices]
- # Sort by x_min for X-axis projection
- x_sorted_indices = y_boxes_chunk[:, 0].argsort()
- x_sorted_boxes_chunk = y_boxes_chunk[x_sorted_indices]
- x_sorted_indices_chunk = y_indices_chunk[x_sorted_indices]
- # Perform X-axis projection
- x_projection = projection_by_bboxes(boxes=x_sorted_boxes_chunk, axis=0)
- x_intervals = split_projection_profile(x_projection, 0, min_gap)
- if not x_intervals:
- continue
- # If X-axis cannot be further segmented, add current indices to results
- if len(x_intervals[0]) == 1:
- res.extend(x_sorted_indices_chunk)
- continue
- # Recursively process each segment defined by X-axis projection
- for x_start, x_end in zip(*x_intervals):
- x_interval_indices = (x_start <= x_sorted_boxes_chunk[:, 0]) & (
- x_sorted_boxes_chunk[:, 0] < x_end
- )
- recursive_yx_cut(
- x_sorted_boxes_chunk[x_interval_indices],
- x_sorted_indices_chunk[x_interval_indices],
- res,
- )
- def recursive_xy_cut(boxes: np.ndarray, indices: List[int], res: List[int], min_gap=1):
- """
- Recursively performs X-axis projection followed by Y-axis projection to segment bounding boxes.
- Args:
- boxes: A (N, 4) array representing bounding boxes with [x_min, y_min, x_max, y_max].
- indices: A list of indices representing the position of boxes in the original data.
- res: A list to store indices of bounding boxes that meet the criteria.
- """
- # Ensure boxes and indices have the same length
- assert len(boxes) == len(indices)
- # Sort by x_min to prepare for X-axis projection
- x_sorted_indices = boxes[:, 0].argsort()
- x_sorted_boxes = boxes[x_sorted_indices]
- x_sorted_indices = np.array(indices)[x_sorted_indices]
- # Perform X-axis projection
- x_projection = projection_by_bboxes(boxes=x_sorted_boxes, axis=0)
- x_intervals = split_projection_profile(x_projection, 0, 1)
- if not x_intervals:
- return
- # Process each segment defined by X-axis projection
- for x_start, x_end in zip(*x_intervals):
- # Select boxes within the current x interval
- x_interval_indices = (x_start <= x_sorted_boxes[:, 0]) & (
- x_sorted_boxes[:, 0] < x_end
- )
- x_boxes_chunk = x_sorted_boxes[x_interval_indices]
- x_indices_chunk = x_sorted_indices[x_interval_indices]
- # Sort selected boxes by y_min to prepare for Y-axis projection
- y_sorted_indices = x_boxes_chunk[:, 1].argsort()
- y_sorted_boxes_chunk = x_boxes_chunk[y_sorted_indices]
- y_sorted_indices_chunk = x_indices_chunk[y_sorted_indices]
- # Perform Y-axis projection
- y_projection = projection_by_bboxes(boxes=y_sorted_boxes_chunk, axis=1)
- y_intervals = split_projection_profile(y_projection, 0, min_gap)
- if not y_intervals:
- continue
- # If Y-axis cannot be further segmented, add current indices to results
- if len(y_intervals[0]) == 1:
- res.extend(y_sorted_indices_chunk)
- continue
- # Recursively process each segment defined by Y-axis projection
- for y_start, y_end in zip(*y_intervals):
- y_interval_indices = (y_start <= y_sorted_boxes_chunk[:, 1]) & (
- y_sorted_boxes_chunk[:, 1] < y_end
- )
- recursive_xy_cut(
- y_sorted_boxes_chunk[y_interval_indices],
- y_sorted_indices_chunk[y_interval_indices],
- res,
- )
- def sort_by_xycut(block_bboxes, direction=0, min_gap=1):
- block_bboxes = np.asarray(block_bboxes).astype(int)
- res = []
- if direction == 1:
- recursive_yx_cut(
- block_bboxes,
- np.arange(
- len(block_bboxes),
- ),
- res,
- min_gap,
- )
- else:
- recursive_xy_cut(
- block_bboxes,
- np.arange(
- len(block_bboxes),
- ),
- res,
- min_gap,
- )
- return res
- def _img_array2path(data, save_path):
- """
- Save an image array to disk and return the file path.
- Args:
- data (np.ndarray): An image represented as a numpy array.
- save_path (str or Path): The base path where images should be saved.
- Returns:
- str: The relative path of the saved image file.
- """
- if isinstance(data, np.ndarray) and data.ndim == 3:
- # Generate a unique filename using UUID
- img_name = f"image_{uuid.uuid4().hex}.png"
- img_path = Path(save_path) / "imgs" / img_name
- img_path.parent.mkdir(
- parents=True,
- exist_ok=True,
- ) # Ensure the directory exists
- cv2.imwrite(str(img_path), data)
- return f"imgs/{img_name}"
- else:
- return ValueError
- def recursive_img_array2path(data, save_path, labels=[]):
- """
- Process a dictionary or list to save image arrays to disk and replace them with file paths.
- Args:
- data (dict or list): The data structure that may contain image arrays.
- save_path (str or Path): The base path where images should be saved.
- """
- if isinstance(data, dict):
- for k, v in data.items():
- if k in labels and isinstance(v, np.ndarray) and v.ndim == 3:
- data[k] = _img_array2path(v, save_path)
- else:
- recursive_img_array2path(v, save_path, labels)
- elif isinstance(data, list):
- for item in data:
- recursive_img_array2path(item, save_path, labels)
- def _calculate_overlap_area_2_minbox_area_ratio(bbox1, bbox2):
- """
- Calculate the ratio of the overlap area between bbox1 and bbox2
- to the area of the smaller bounding box.
- Args:
- bbox1 (list or tuple): Coordinates of the first bounding box [x_min, y_min, x_max, y_max].
- bbox2 (list or tuple): Coordinates of the second bounding box [x_min, y_min, x_max, y_max].
- Returns:
- float: The ratio of the overlap area to the area of the smaller bounding box.
- """
- x_left = max(bbox1[0], bbox2[0])
- y_top = max(bbox1[1], bbox2[1])
- x_right = min(bbox1[2], bbox2[2])
- y_bottom = min(bbox1[3], bbox2[3])
- if x_right <= x_left or y_bottom <= y_top:
- return 0.0
- # Calculate the area of the overlap
- intersection_area = (x_right - x_left) * (y_bottom - y_top)
- # Calculate the areas of both bounding boxes
- area_bbox1 = (bbox1[2] - bbox1[0]) * (bbox1[3] - bbox1[1])
- area_bbox2 = (bbox2[2] - bbox2[0]) * (bbox2[3] - bbox2[1])
- # Determine the minimum non-zero box area
- min_box_area = min(area_bbox1, area_bbox2)
- # Avoid division by zero in case of zero-area boxes
- if min_box_area == 0:
- return 0.0
- return intersection_area / min_box_area
- def _get_minbox_if_overlap_by_ratio(bbox1, bbox2, ratio, smaller=True):
- """
- Determine if the overlap area between two bounding boxes exceeds a given ratio
- and return the smaller (or larger) bounding box based on the `smaller` flag.
- Args:
- bbox1 (list or tuple): Coordinates of the first bounding box [x_min, y_min, x_max, y_max].
- bbox2 (list or tuple): Coordinates of the second bounding box [x_min, y_min, x_max, y_max].
- ratio (float): The overlap ratio threshold.
- smaller (bool): If True, return the smaller bounding box; otherwise, return the larger one.
- Returns:
- list or tuple: The selected bounding box or None if the overlap ratio is not exceeded.
- """
- # Calculate the areas of both bounding boxes
- area1 = (bbox1[2] - bbox1[0]) * (bbox1[3] - bbox1[1])
- area2 = (bbox2[2] - bbox2[0]) * (bbox2[3] - bbox2[1])
- # Calculate the overlap ratio using a helper function
- overlap_ratio = _calculate_overlap_area_2_minbox_area_ratio(bbox1, bbox2)
- # Check if the overlap ratio exceeds the threshold
- if overlap_ratio > ratio:
- if (area1 <= area2 and smaller) or (area1 >= area2 and not smaller):
- return 1
- else:
- return 2
- return None
- def _remove_overlap_blocks(blocks, threshold=0.65, smaller=True):
- """
- Remove overlapping blocks based on a specified overlap ratio threshold.
- Args:
- blocks (list): List of block dictionaries, each containing a 'layout_bbox' key.
- threshold (float): Ratio threshold to determine significant overlap.
- smaller (bool): If True, the smaller block in overlap is removed.
- Returns:
- tuple: A tuple containing the updated list of blocks and a list of dropped blocks.
- """
- dropped_blocks = []
- dropped_indexes = []
- # Iterate over each pair of blocks to find overlaps
- for i in range(len(blocks)):
- block1 = blocks[i]
- for j in range(i + 1, len(blocks)):
- block2 = blocks[j]
- # Skip blocks that are already marked for removal
- if i in dropped_indexes or j in dropped_indexes:
- continue
- # Check for overlap and determine which block to remove
- overlap_box_index = _get_minbox_if_overlap_by_ratio(
- block1["layout_bbox"],
- block2["layout_bbox"],
- threshold,
- smaller=smaller,
- )
- if overlap_box_index is not None:
- if overlap_box_index == 1:
- block_to_remove = block1
- drop_index = i
- else:
- block_to_remove = block2
- drop_index = j
- if drop_index not in dropped_indexes:
- dropped_indexes.append(drop_index)
- dropped_blocks.append(block_to_remove)
- dropped_indexes.sort()
- for i in reversed(dropped_indexes):
- del blocks[i]
- return blocks, dropped_blocks
- def _text_median_width(blocks):
- widths = [
- block["layout_bbox"][2] - block["layout_bbox"][0]
- for block in blocks
- if block["label"] in ["text"]
- ]
- return np.median(widths) if widths else float("inf")
- def _get_layout_property(blocks, median_width, no_mask_labels, threshold=0.8):
- """
- Determine the layout (single or double column) of text blocks.
- Args:
- blocks (list): List of block dictionaries containing 'label' and 'layout_bbox'.
- median_width (float): Median width of text blocks.
- threshold (float): Threshold for determining layout overlap.
- Returns:
- list: Updated list of blocks with layout information.
- """
- blocks.sort(
- key=lambda x: (
- x["layout_bbox"][0],
- (x["layout_bbox"][2] - x["layout_bbox"][0]),
- ),
- )
- check_single_layout = {}
- page_min_x, page_max_x = float("inf"), 0
- double_label_height = 0
- double_label_area = 0
- single_label_area = 0
- for i, block in enumerate(blocks):
- page_min_x = min(page_min_x, block["layout_bbox"][0])
- page_max_x = max(page_max_x, block["layout_bbox"][2])
- page_width = page_max_x - page_min_x
- for i, block in enumerate(blocks):
- if block["label"] not in no_mask_labels:
- continue
- x_min_i, _, x_max_i, _ = block["layout_bbox"]
- layout_length = x_max_i - x_min_i
- cover_count, cover_with_threshold_count = 0, 0
- match_block_with_threshold_indexes = []
- for j, other_block in enumerate(blocks):
- if i == j or other_block["label"] not in no_mask_labels:
- continue
- x_min_j, _, x_max_j, _ = other_block["layout_bbox"]
- x_match_min, x_match_max = max(
- x_min_i,
- x_min_j,
- ), min(x_max_i, x_max_j)
- match_block_iou = (x_match_max - x_match_min) / (x_max_j - x_min_j)
- if match_block_iou > 0:
- cover_count += 1
- if match_block_iou > threshold:
- cover_with_threshold_count += 1
- match_block_with_threshold_indexes.append(
- (j, match_block_iou),
- )
- x_min_i = x_match_max
- if x_min_i >= x_max_i:
- break
- if (
- layout_length > median_width * 1.3
- and (cover_with_threshold_count >= 2 or cover_count >= 2)
- ) or layout_length > 0.6 * page_width:
- # if layout_length > median_width * 1.3 and (cover_with_threshold_count >= 2):
- block["layout"] = "double"
- double_label_height += block["layout_bbox"][3] - block["layout_bbox"][1]
- double_label_area += (block["layout_bbox"][2] - block["layout_bbox"][0]) * (
- block["layout_bbox"][3] - block["layout_bbox"][1]
- )
- else:
- block["layout"] = "single"
- check_single_layout[i] = match_block_with_threshold_indexes
- # Check single-layout block
- for i, single_layout in check_single_layout.items():
- if single_layout:
- index, match_iou = single_layout[-1]
- if match_iou > 0.9 and blocks[index]["layout"] == "double":
- blocks[i]["layout"] = "double"
- double_label_height += (
- blocks[i]["layout_bbox"][3] - blocks[i]["layout_bbox"][1]
- )
- double_label_area += (
- blocks[i]["layout_bbox"][2] - blocks[i]["layout_bbox"][0]
- ) * (blocks[i]["layout_bbox"][3] - blocks[i]["layout_bbox"][1])
- else:
- single_label_area += (
- blocks[i]["layout_bbox"][2] - blocks[i]["layout_bbox"][0]
- ) * (blocks[i]["layout_bbox"][3] - blocks[i]["layout_bbox"][1])
- return blocks, (double_label_area > single_label_area)
- def _get_bbox_direction(input_bbox, ratio=1):
- """
- Determine if a bounding box is horizontal or vertical.
- Args:
- input_bbox (list): Bounding box [x_min, y_min, x_max, y_max].
- ratio (float): Ratio for determining orientation.
- Returns:
- bool: True if horizontal, False if vertical.
- """
- return (input_bbox[2] - input_bbox[0]) * ratio >= (input_bbox[3] - input_bbox[1])
- def _get_projection_iou(input_bbox, match_bbox, is_horizontal=True):
- """
- Calculate the IoU of lines between two bounding boxes.
- Args:
- input_bbox (list): First bounding box [x_min, y_min, x_max, y_max].
- match_bbox (list): Second bounding box [x_min, y_min, x_max, y_max].
- is_horizontal (bool): Whether to compare horizontally or vertically.
- Returns:
- float: Line IoU.
- """
- if is_horizontal:
- x_match_min = max(input_bbox[0], match_bbox[0])
- x_match_max = min(input_bbox[2], match_bbox[2])
- return (x_match_max - x_match_min) / (input_bbox[2] - input_bbox[0])
- else:
- y_match_min = max(input_bbox[1], match_bbox[1])
- y_match_max = min(input_bbox[3], match_bbox[3])
- return (y_match_max - y_match_min) / (input_bbox[3] - input_bbox[1])
- def _get_sub_category(blocks, title_labels):
- """
- Determine the layout of title and text blocks.
- Args:
- blocks (list): List of block dictionaries.
- title_labels (list): List of labels considered as titles.
- Returns:
- list: Updated list of blocks with title-text layout information.
- """
- sub_title_labels = ["paragraph_title"]
- vision_labels = ["image", "table", "chart", "figure"]
- for i, block1 in enumerate(blocks):
- if block1.get("title_text") is None:
- block1["title_text"] = []
- if block1.get("sub_title") is None:
- block1["sub_title"] = []
- if block1.get("vision_footnote") is None:
- block1["vision_footnote"] = []
- if block1.get("sub_label") is None:
- block1["sub_label"] = block1["label"]
- if (
- block1["label"] not in title_labels
- and block1["label"] not in sub_title_labels
- and block1["label"] not in vision_labels
- ):
- continue
- bbox1 = block1["layout_bbox"]
- x1, y1, x2, y2 = bbox1
- is_horizontal_1 = _get_bbox_direction(block1["layout_bbox"])
- left_up_title_text_distance = float("inf")
- left_up_title_text_index = -1
- left_up_title_text_direction = None
- right_down_title_text_distance = float("inf")
- right_down_title_text_index = -1
- right_down_title_text_direction = None
- for j, block2 in enumerate(blocks):
- if i == j:
- continue
- bbox2 = block2["layout_bbox"]
- x1_prime, y1_prime, x2_prime, y2_prime = bbox2
- is_horizontal_2 = _get_bbox_direction(bbox2)
- match_block_iou = _get_projection_iou(
- bbox2,
- bbox1,
- is_horizontal_1,
- )
- def distance_(is_horizontal, is_left_up):
- if is_horizontal:
- if is_left_up:
- return (y1 - y2_prime + 2) // 5 + x1_prime / 5000
- else:
- return (y1_prime - y2 + 2) // 5 + x1_prime / 5000
- else:
- if is_left_up:
- return (x1 - x2_prime + 2) // 5 + y1_prime / 5000
- else:
- return (x1_prime - x2 + 2) // 5 + y1_prime / 5000
- block_iou_threshold = 0.1
- if block1["label"] in sub_title_labels:
- match_block_iou = _calculate_overlap_area_2_minbox_area_ratio(
- bbox2,
- bbox1,
- )
- block_iou_threshold = 0.7
- if is_horizontal_1:
- if match_block_iou >= block_iou_threshold:
- left_up_distance = distance_(True, True)
- right_down_distance = distance_(True, False)
- if (
- y2_prime <= y1
- and left_up_distance <= left_up_title_text_distance
- ):
- left_up_title_text_distance = left_up_distance
- left_up_title_text_index = j
- left_up_title_text_direction = is_horizontal_2
- elif (
- y1_prime > y2
- and right_down_distance < right_down_title_text_distance
- ):
- right_down_title_text_distance = right_down_distance
- right_down_title_text_index = j
- right_down_title_text_direction = is_horizontal_2
- else:
- if match_block_iou >= block_iou_threshold:
- left_up_distance = distance_(False, True)
- right_down_distance = distance_(False, False)
- if (
- x2_prime <= x1
- and left_up_distance <= left_up_title_text_distance
- ):
- left_up_title_text_distance = left_up_distance
- left_up_title_text_index = j
- left_up_title_text_direction = is_horizontal_2
- elif (
- x1_prime > x2
- and right_down_distance < right_down_title_text_distance
- ):
- right_down_title_text_distance = right_down_distance
- right_down_title_text_index = j
- right_down_title_text_direction = is_horizontal_2
- height = bbox1[3] - bbox1[1]
- width = bbox1[2] - bbox1[0]
- title_text_weight = [0.8, 0.8]
- # title_text_weight = [2, 2]
- title_text = []
- sub_title = []
- vision_footnote = []
- def get_sub_category_(
- title_text_direction,
- title_text_index,
- label,
- is_left_up=True,
- ):
- direction_ = [1, 3] if is_left_up else [2, 4]
- if (
- title_text_direction == is_horizontal_1
- and title_text_index != -1
- and (label == "text" or label == "paragraph_title")
- ):
- bbox2 = blocks[title_text_index]["layout_bbox"]
- if is_horizontal_1:
- height1 = bbox2[3] - bbox2[1]
- width1 = bbox2[2] - bbox2[0]
- if label == "text":
- if (
- _nearest_edge_distance(bbox1, bbox2)[0] <= 15
- and block1["label"] in vision_labels
- and width1 < width
- and height1 < 0.5 * height
- ):
- blocks[title_text_index]["sub_label"] = "vision_footnote"
- vision_footnote.append(bbox2)
- elif (
- height1 < height * title_text_weight[0]
- and (width1 < width or width1 > 1.5 * width)
- and block1["label"] in title_labels
- ):
- blocks[title_text_index]["sub_label"] = "title_text"
- title_text.append((direction_[0], bbox2))
- elif (
- label == "paragraph_title"
- and block1["label"] in sub_title_labels
- ):
- sub_title.append(bbox2)
- else:
- height1 = bbox2[3] - bbox2[1]
- width1 = bbox2[2] - bbox2[0]
- if label == "text":
- if (
- _nearest_edge_distance(bbox1, bbox2)[0] <= 15
- and block1["label"] in vision_labels
- and height1 < height
- and width1 < 0.5 * width
- ):
- blocks[title_text_index]["sub_label"] = "vision_footnote"
- vision_footnote.append(bbox2)
- elif (
- width1 < width * title_text_weight[1]
- and block1["label"] in title_labels
- ):
- blocks[title_text_index]["sub_label"] = "title_text"
- title_text.append((direction_[1], bbox2))
- elif (
- label == "paragraph_title"
- and block1["label"] in sub_title_labels
- ):
- sub_title.append(bbox2)
- if (
- is_horizontal_1
- and abs(left_up_title_text_distance - right_down_title_text_distance) * 5
- > height
- ) or (
- not is_horizontal_1
- and abs(left_up_title_text_distance - right_down_title_text_distance) * 5
- > width
- ):
- if left_up_title_text_distance < right_down_title_text_distance:
- get_sub_category_(
- left_up_title_text_direction,
- left_up_title_text_index,
- blocks[left_up_title_text_index]["label"],
- True,
- )
- else:
- get_sub_category_(
- right_down_title_text_direction,
- right_down_title_text_index,
- blocks[right_down_title_text_index]["label"],
- False,
- )
- else:
- get_sub_category_(
- left_up_title_text_direction,
- left_up_title_text_index,
- blocks[left_up_title_text_index]["label"],
- True,
- )
- get_sub_category_(
- right_down_title_text_direction,
- right_down_title_text_index,
- blocks[right_down_title_text_index]["label"],
- False,
- )
- if block1["label"] in title_labels:
- if blocks[i].get("title_text") == []:
- blocks[i]["title_text"] = title_text
- if block1["label"] in sub_title_labels:
- if blocks[i].get("sub_title") == []:
- blocks[i]["sub_title"] = sub_title
- if block1["label"] in vision_labels:
- if blocks[i].get("vision_footnote") == []:
- blocks[i]["vision_footnote"] = vision_footnote
- return blocks
- def get_layout_ordering(data, no_mask_labels=[], already_sorted=False):
- """
- Process layout parsing results to remove overlapping bounding boxes
- and assign an ordering index based on their positions.
- Modifies:
- The 'parsing_result' list in 'layout_parsing_result' by adding an 'index' to each block.
- """
- if already_sorted:
- return data
- title_text_labels = ["doc_title"]
- title_labels = ["doc_title", "paragraph_title"]
- vision_labels = ["image", "table", "seal", "chart", "figure"]
- vision_title_labels = ["table_title", "chart_title", "figure_title"]
- parsing_result = data["sub_blocks"]
- parsing_result, _ = _remove_overlap_blocks(
- parsing_result,
- threshold=0.5,
- smaller=True,
- )
- parsing_result = _get_sub_category(parsing_result, title_text_labels)
- doc_flag = False
- median_width = _text_median_width(parsing_result)
- parsing_result, projection_direction = _get_layout_property(
- parsing_result,
- median_width,
- no_mask_labels=no_mask_labels,
- threshold=0.3,
- )
- # Convert bounding boxes to float and remove overlaps
- (
- double_text_blocks,
- title_text_blocks,
- title_blocks,
- vision_blocks,
- vision_title_blocks,
- vision_footnote_blocks,
- other_blocks,
- ) = ([], [], [], [], [], [], [])
- drop_indexes = []
- for index, block in enumerate(parsing_result):
- label = block["sub_label"]
- block["layout_bbox"] = list(map(int, block["layout_bbox"]))
- if label == "doc_title":
- doc_flag = True
- if label in no_mask_labels:
- if block["layout"] == "double":
- double_text_blocks.append(block)
- drop_indexes.append(index)
- elif label == "title_text":
- title_text_blocks.append(block)
- drop_indexes.append(index)
- elif label == "vision_footnote":
- vision_footnote_blocks.append(block)
- drop_indexes.append(index)
- elif label in vision_title_labels:
- vision_title_blocks.append(block)
- drop_indexes.append(index)
- elif label in title_labels:
- title_blocks.append(block)
- drop_indexes.append(index)
- elif label in vision_labels:
- vision_blocks.append(block)
- drop_indexes.append(index)
- else:
- other_blocks.append(block)
- drop_indexes.append(index)
- for index in sorted(drop_indexes, reverse=True):
- del parsing_result[index]
- if len(parsing_result) > 0:
- # single text label
- if len(double_text_blocks) > len(parsing_result) or projection_direction:
- parsing_result.extend(title_blocks + double_text_blocks)
- title_blocks = []
- double_text_blocks = []
- block_bboxes = [block["layout_bbox"] for block in parsing_result]
- block_bboxes.sort(
- key=lambda x: (
- x[0] // max(20, median_width),
- x[1],
- ),
- )
- block_bboxes = np.array(block_bboxes)
- print("sort by yxcut...")
- sorted_indices = sort_by_xycut(
- block_bboxes,
- direction=1,
- min_gap=1,
- )
- else:
- block_bboxes = [block["layout_bbox"] for block in parsing_result]
- block_bboxes.sort(key=lambda x: (x[0] // 20, x[1]))
- block_bboxes = np.array(block_bboxes)
- sorted_indices = sort_by_xycut(
- block_bboxes,
- direction=0,
- min_gap=20,
- )
- sorted_boxes = block_bboxes[sorted_indices].tolist()
- for block in parsing_result:
- block["index"] = sorted_boxes.index(block["layout_bbox"]) + 1
- block["sub_index"] = sorted_boxes.index(block["layout_bbox"]) + 1
- def nearest_match_(input_blocks, distance_type="manhattan", is_add_index=True):
- for block in input_blocks:
- bbox = block["layout_bbox"]
- min_distance = float("inf")
- min_distance_config = [
- [float("inf"), float("inf")],
- float("inf"),
- float("inf"),
- ] # for double text
- nearest_gt_index = 0
- for match_block in parsing_result:
- match_bbox = match_block["layout_bbox"]
- if distance_type == "nearest_iou_edge_distance":
- distance, min_distance_config = _nearest_iou_edge_distance(
- bbox,
- match_bbox,
- block["sub_label"],
- vision_labels=vision_labels,
- no_mask_labels=no_mask_labels,
- median_width=median_width,
- title_labels=title_labels,
- title_text=block["title_text"],
- sub_title=block["sub_title"],
- min_distance_config=min_distance_config,
- tolerance_len=10,
- )
- elif distance_type == "title_text":
- if (
- match_block["label"] in title_labels + ["abstract"]
- and match_block["title_text"] != []
- ):
- iou_left_up = _calculate_overlap_area_2_minbox_area_ratio(
- bbox,
- match_block["title_text"][0][1],
- )
- iou_right_down = _calculate_overlap_area_2_minbox_area_ratio(
- bbox,
- match_block["title_text"][-1][1],
- )
- iou = 1 - max(iou_left_up, iou_right_down)
- distance = _manhattan_distance(bbox, match_bbox) * iou
- else:
- distance = float("inf")
- elif distance_type == "manhattan":
- distance = _manhattan_distance(bbox, match_bbox)
- elif distance_type == "vision_footnote":
- if (
- match_block["label"] in vision_labels
- and match_block["vision_footnote"] != []
- ):
- iou_left_up = _calculate_overlap_area_2_minbox_area_ratio(
- bbox,
- match_block["vision_footnote"][0],
- )
- iou_right_down = _calculate_overlap_area_2_minbox_area_ratio(
- bbox,
- match_block["vision_footnote"][-1],
- )
- iou = 1 - max(iou_left_up, iou_right_down)
- distance = _manhattan_distance(bbox, match_bbox) * iou
- else:
- distance = float("inf")
- elif distance_type == "vision_body":
- if (
- match_block["label"] in vision_title_labels
- and block["vision_footnote"] != []
- ):
- iou_left_up = _calculate_overlap_area_2_minbox_area_ratio(
- match_bbox,
- block["vision_footnote"][0],
- )
- iou_right_down = _calculate_overlap_area_2_minbox_area_ratio(
- match_bbox,
- block["vision_footnote"][-1],
- )
- iou = 1 - max(iou_left_up, iou_right_down)
- distance = _manhattan_distance(bbox, match_bbox) * iou
- else:
- distance = float("inf")
- else:
- raise NotImplementedError
- if distance < min_distance:
- min_distance = distance
- if is_add_index:
- nearest_gt_index = match_block.get("index", 999)
- else:
- nearest_gt_index = match_block.get("sub_index", 999)
- if is_add_index:
- block["index"] = nearest_gt_index
- else:
- block["sub_index"] = nearest_gt_index
- parsing_result.append(block)
- # double text label
- double_text_blocks.sort(
- key=lambda x: (
- x["layout_bbox"][1] // 10,
- x["layout_bbox"][0] // median_width,
- x["layout_bbox"][1] ** 2 + x["layout_bbox"][0] ** 2,
- ),
- )
- nearest_match_(
- double_text_blocks,
- distance_type="nearest_iou_edge_distance",
- )
- parsing_result.sort(
- key=lambda x: (x["index"], x["layout_bbox"][1], x["layout_bbox"][0]),
- )
- for idx, block in enumerate(parsing_result):
- block["index"] = idx + 1
- block["sub_index"] = idx + 1
- # title label
- title_blocks.sort(
- key=lambda x: (
- x["layout_bbox"][1] // 10,
- x["layout_bbox"][0] // median_width,
- x["layout_bbox"][1] ** 2 + x["layout_bbox"][0] ** 2,
- ),
- )
- nearest_match_(title_blocks, distance_type="nearest_iou_edge_distance")
- if doc_flag:
- # text_sort_labels = ["doc_title","paragraph_title","abstract"]
- text_sort_labels = ["doc_title"]
- text_label_priority = {
- label: priority for priority, label in enumerate(text_sort_labels)
- }
- doc_titles = []
- for i, block in enumerate(parsing_result):
- if block["label"] == "doc_title":
- doc_titles.append(
- (i, block["layout_bbox"][1], block["layout_bbox"][0]),
- )
- doc_titles.sort(key=lambda x: (x[1], x[2]))
- first_doc_title_index = doc_titles[0][0]
- parsing_result[first_doc_title_index]["index"] = 1
- parsing_result.sort(
- key=lambda x: (
- x["index"],
- text_label_priority.get(x["label"], 9999),
- x["layout_bbox"][1],
- x["layout_bbox"][0],
- ),
- )
- else:
- parsing_result.sort(
- key=lambda x: (
- x["index"],
- x["layout_bbox"][1],
- x["layout_bbox"][0],
- ),
- )
- for idx, block in enumerate(parsing_result):
- block["index"] = idx + 1
- block["sub_index"] = idx + 1
- # title-text label
- nearest_match_(title_text_blocks, distance_type="title_text")
- text_sort_labels = ["doc_title", "paragraph_title", "title_text"]
- text_label_priority = {
- label: priority for priority, label in enumerate(text_sort_labels)
- }
- parsing_result.sort(
- key=lambda x: (
- x["index"],
- text_label_priority.get(x["sub_label"], 9999),
- x["layout_bbox"][1],
- x["layout_bbox"][0],
- ),
- )
- for idx, block in enumerate(parsing_result):
- block["index"] = idx + 1
- block["sub_index"] = idx + 1
- # image,figure,chart,seal label
- nearest_match_(
- vision_title_blocks,
- distance_type="nearest_iou_edge_distance",
- is_add_index=False,
- )
- parsing_result.sort(
- key=lambda x: (
- x["sub_index"],
- x["layout_bbox"][1],
- x["layout_bbox"][0],
- ),
- )
- for idx, block in enumerate(parsing_result):
- block["sub_index"] = idx + 1
- # image,figure,chart,seal label
- nearest_match_(
- vision_blocks,
- distance_type="nearest_iou_edge_distance",
- is_add_index=False,
- )
- parsing_result.sort(
- key=lambda x: (
- x["sub_index"],
- x["layout_bbox"][1],
- x["layout_bbox"][0],
- ),
- )
- for idx, block in enumerate(parsing_result):
- block["sub_index"] = idx + 1
- # vision footnote label
- nearest_match_(
- vision_footnote_blocks,
- distance_type="vision_footnote",
- is_add_index=False,
- )
- text_label_priority = {"vision_footnote": 9999}
- parsing_result.sort(
- key=lambda x: (
- x["sub_index"],
- text_label_priority.get(x["sub_label"], 0),
- x["layout_bbox"][1],
- x["layout_bbox"][0],
- ),
- )
- for idx, block in enumerate(parsing_result):
- block["sub_index"] = idx + 1
- # header、footnote、header_image... label
- nearest_match_(other_blocks, distance_type="manhattan", is_add_index=False)
- return data
- def _generate_input_data(parsing_result):
- """
- The evaluation input data is generated based on the parsing results.
- :param parsing_result: A list containing the results of the layout parsing
- :return: A formatted list of input data
- """
- input_data = [
- {
- "block_bbox": block["block_bbox"],
- "sub_indices": [],
- "sub_bboxes": [],
- }
- for block in parsing_result
- ]
- for block_index, block in enumerate(parsing_result):
- sub_blocks = block["sub_blocks"]
- get_layout_ordering(
- block_index=block_index,
- no_mask_labels=[
- "text",
- "formula",
- "algorithm",
- "reference",
- "content",
- "abstract",
- ],
- )
- for sub_block in sub_blocks:
- input_data[block_index]["sub_bboxes"].append(
- list(map(int, sub_block["layout_bbox"])),
- )
- input_data[block_index]["sub_indices"].append(
- int(sub_block["index"]),
- )
- return input_data
- def _manhattan_distance(point1, point2, weight_x=1, weight_y=1):
- return weight_x * abs(point1[0] - point2[0]) + weight_y * abs(point1[1] - point2[1])
- def _calculate_horizontal_distance(
- input_bbox,
- match_bbox,
- height,
- disperse,
- title_text,
- ):
- """
- Calculate the horizontal distance between two bounding boxes, considering title text adjustments.
- Args:
- input_bbox (list): The bounding box coordinates [x1, y1, x2, y2] of the input object.
- match_bbox (list): The bounding box coordinates [x1', y1', x2', y2'] of the object to match against.
- height (int): The height of the input bounding box used for normalization.
- disperse (int): The dispersion factor used to normalize the horizontal distance.
- title_text (list): A list of tuples containing title text information and their bounding box coordinates.
- Format: [(position_indicator, [x1, y1, x2, y2]), ...].
- Returns:
- float: The calculated horizontal distance taking into account the title text adjustments.
- """
- x1, y1, x2, y2 = input_bbox
- x1_prime, y1_prime, x2_prime, y2_prime = match_bbox
- if y2 < y1_prime:
- if title_text and title_text[-1][0] == 2:
- y2 += title_text[-1][1][3] - title_text[-1][1][1]
- distance1 = (y1_prime - y2) * 0.5
- else:
- if title_text and title_text[0][0] == 1:
- y1 -= title_text[0][1][3] - title_text[0][1][1]
- distance1 = y1 - y2_prime
- return (
- abs(x2_prime - x1) // disperse + distance1 // height + distance1 / 5000
- ) # if page max size == 5000
- def _calculate_vertical_distance(input_bbox, match_bbox, width, disperse, title_text):
- """
- Calculate the vertical distance between two bounding boxes, considering title text adjustments.
- Args:
- input_bbox (list): The bounding box coordinates [x1, y1, x2, y2] of the input object.
- match_bbox (list): The bounding box coordinates [x1', y1', x2', y2'] of the object to match against.
- width (int): The width of the input bounding box used for normalization.
- disperse (int): The dispersion factor used to normalize the vertical distance.
- title_text (list): A list of tuples containing title text information and their bounding box coordinates.
- Format: [(position_indicator, [x1, y1, x2, y2]), ...].
- Returns:
- float: The calculated vertical distance taking into account the title text adjustments.
- """
- x1, y1, x2, y2 = input_bbox
- x1_prime, y1_prime, x2_prime, y2_prime = match_bbox
- if x1 > x2_prime:
- if title_text and title_text[0][0] == 3:
- x1 -= title_text[0][1][2] - title_text[0][1][0]
- distance2 = (x1 - x2_prime) * 0.5
- else:
- if title_text and title_text[-1][0] == 4:
- x2 += title_text[-1][1][2] - title_text[-1][1][0]
- distance2 = x1_prime - x2
- return abs(y2_prime - y1) // disperse + distance2 // width + distance2 / 5000
- def _nearest_edge_distance(
- input_bbox,
- match_bbox,
- weight=[1, 1, 1, 1],
- label="text",
- no_mask_labels=[],
- min_edge_distances_config=[],
- tolerance_len=10,
- ):
- """
- Calculate the nearest edge distance between two bounding boxes, considering directional weights.
- Args:
- input_bbox (list): The bounding box coordinates [x1, y1, x2, y2] of the input object.
- match_bbox (list): The bounding box coordinates [x1', y1', x2', y2'] of the object to match against.
- weight (list, optional): Directional weights for the edge distances [left, right, up, down]. Defaults to [1, 1, 1, 1].
- label (str, optional): The label/type of the object in the bounding box (e.g., 'text'). Defaults to 'text'.
- no_mask_labels (list, optional): Labels for which no masking is applied when calculating edge distances. Defaults to an empty list.
- min_edge_distances_config (list, optional): Configuration for minimum edge distances [min_edge_distance_x, min_edge_distance_y].
- Defaults to [float('inf'), float('inf')].
- Returns:
- tuple: A tuple containing:
- - The calculated minimum edge distance between the bounding boxes.
- - A list with the minimum edge distances in the x and y directions.
- """
- match_bbox_iou = _calculate_overlap_area_2_minbox_area_ratio(
- input_bbox,
- match_bbox,
- )
- if match_bbox_iou > 0 and label not in no_mask_labels:
- return 0, [0, 0]
- if not min_edge_distances_config:
- min_edge_distances_config = [float("inf"), float("inf")]
- min_edge_distance_x, min_edge_distance_y = min_edge_distances_config
- x1, y1, x2, y2 = input_bbox
- x1_prime, y1_prime, x2_prime, y2_prime = match_bbox
- direction_num = 0
- distance_x = float("inf")
- distance_y = float("inf")
- distance = [float("inf")] * 4
- # input_bbox is to the left of match_bbox
- if x2 < x1_prime:
- direction_num += 1
- distance[0] = x1_prime - x2
- if abs(distance[0] - min_edge_distance_x) <= tolerance_len:
- distance_x = min_edge_distance_x * weight[0]
- else:
- distance_x = distance[0] * weight[0]
- # input_bbox is to the right of match_bbox
- elif x1 > x2_prime:
- direction_num += 1
- distance[1] = x1 - x2_prime
- if abs(distance[1] - min_edge_distance_x) <= tolerance_len:
- distance_x = min_edge_distance_x * weight[1]
- else:
- distance_x = distance[1] * weight[1]
- elif match_bbox_iou > 0:
- distance[0] = 0
- distance_x = 0
- # input_bbox is above match_bbox
- if y2 < y1_prime:
- direction_num += 1
- distance[2] = y1_prime - y2
- if abs(distance[2] - min_edge_distance_y) <= tolerance_len:
- distance_y = min_edge_distance_y * weight[2]
- else:
- distance_y = distance[2] * weight[2]
- if label in no_mask_labels:
- distance_y = max(0.1, distance_y) * 100
- # input_bbox is below match_bbox
- elif y1 > y2_prime:
- direction_num += 1
- distance[3] = y1 - y2_prime
- if abs(distance[3] - min_edge_distance_y) <= tolerance_len:
- distance_y = min_edge_distance_y * weight[3]
- else:
- distance_y = distance[3] * weight[3]
- elif match_bbox_iou > 0:
- distance[2] = 0
- distance_y = 0
- if direction_num == 2:
- return (distance_x + distance_y), [
- min(distance[0], distance[1]),
- min(distance[2], distance[3]),
- ]
- else:
- return min(distance_x, distance_y), [
- min(distance[0], distance[1]),
- min(distance[2], distance[3]),
- ]
- def _get_weights(label, horizontal):
- """Define weights based on the label and orientation."""
- if label == "doc_title":
- return (
- [1, 0.1, 0.1, 1] if horizontal else [0.2, 0.1, 1, 1]
- ) # left-down , right-left
- elif label in [
- "paragraph_title",
- "abstract",
- "figure_title",
- "chart_title",
- "image",
- "seal",
- "chart",
- "figure",
- ]:
- return [1, 1, 0.1, 1] # down
- else:
- return [1, 1, 1, 0.1] # up
- def _nearest_iou_edge_distance(
- input_bbox,
- match_bbox,
- label,
- vision_labels,
- no_mask_labels,
- median_width=-1,
- title_labels=[],
- title_text=[],
- sub_title=[],
- min_distance_config=[],
- tolerance_len=10,
- ):
- """
- Calculate the nearest IOU edge distance between two bounding boxes.
- Args:
- input_bbox (list): The bounding box coordinates [x1, y1, x2, y2] of the input object.
- match_bbox (list): The bounding box coordinates [x1', y1', x2', y2'] of the object to match against.
- label (str): The label/type of the object in the bounding box (e.g., 'image', 'text', etc.).
- no_mask_labels (list): Labels for which no masking is applied when calculating edge distances.
- median_width (int, optional): The median width for title dispersion calculation. Defaults to -1.
- title_labels (list, optional): Labels that indicate the object is a title. Defaults to an empty list.
- title_text (list, optional): Text content associated with title labels. Defaults to an empty list.
- sub_title (list, optional): List of subtitle bounding boxes to adjust the input_bbox. Defaults to an empty list.
- min_distance_config (list, optional): Configuration for minimum distances [min_edge_distances_config, up_edge_distances_config, total_distance].
- Returns:
- tuple: A tuple containing the calculated distance and updated minimum distance configuration.
- """
- x1, y1, x2, y2 = input_bbox
- x1_prime, y1_prime, x2_prime, y2_prime = match_bbox
- min_edge_distances_config, up_edge_distances_config, total_distance = (
- min_distance_config
- )
- iou_distance = 0
- if label in vision_labels:
- horizontal1 = horizontal2 = True
- else:
- horizontal1 = _get_bbox_direction(input_bbox)
- horizontal2 = _get_bbox_direction(match_bbox, 3)
- if (
- horizontal1 != horizontal2
- or _get_projection_iou(input_bbox, match_bbox, horizontal1) < 0.01
- ):
- iou_distance = 1
- elif label == "doc_title" or (label in title_labels and title_text):
- # Calculate distance for titles
- disperse = max(1, median_width)
- width = x2 - x1
- height = y2 - y1
- if horizontal1:
- return (
- _calculate_horizontal_distance(
- input_bbox,
- match_bbox,
- height,
- disperse,
- title_text,
- ),
- min_distance_config,
- )
- else:
- return (
- _calculate_vertical_distance(
- input_bbox,
- match_bbox,
- width,
- disperse,
- title_text,
- ),
- min_distance_config,
- )
- # Adjust input_bbox based on sub_title
- if sub_title:
- for sub in sub_title:
- x1_, y1_, x2_, y2_ = sub
- x1, y1, x2, y2 = (
- min(x1, x1_),
- min(
- y1,
- y1_,
- ),
- max(x2, x2_),
- max(y2, y2_),
- )
- input_bbox = [x1, y1, x2, y2]
- # Calculate edge distance
- weight = _get_weights(label, horizontal1)
- if label == "abstract":
- tolerance_len *= 3
- edge_distance, edge_distance_config = _nearest_edge_distance(
- input_bbox,
- match_bbox,
- weight,
- label=label,
- no_mask_labels=no_mask_labels,
- min_edge_distances_config=min_edge_distances_config,
- tolerance_len=tolerance_len,
- )
- # Weights for combining distances
- iou_edge_weight = [10**6, 10**3, 1, 0.001]
- # Calculate up and left edge distances
- up_edge_distance = y1_prime
- left_edge_distance = x1_prime
- if (
- label in no_mask_labels or label == "paragraph_title" or label in vision_labels
- ) and y1 > y2_prime:
- up_edge_distance = -y2_prime
- left_edge_distance = -x2_prime
- min_up_edge_distance = up_edge_distances_config
- if abs(min_up_edge_distance - up_edge_distance) <= tolerance_len:
- up_edge_distance = min_up_edge_distance
- # Calculate total distance
- distance = (
- iou_distance * iou_edge_weight[0]
- + edge_distance * iou_edge_weight[1]
- + up_edge_distance * iou_edge_weight[2]
- + left_edge_distance * iou_edge_weight[3]
- )
- # Update minimum distance configuration if a smaller distance is found
- if total_distance > distance:
- edge_distance_config = [
- min(min_edge_distances_config[0], edge_distance_config[0]),
- min(min_edge_distances_config[1], edge_distance_config[1]),
- ]
- min_distance_config = [
- edge_distance_config,
- min(up_edge_distance, up_edge_distances_config),
- distance,
- ]
- return distance, min_distance_config
- def get_show_color(label):
- label_colors = {
- # Medium Blue (from 'titles_list')
- "paragraph_title": (102, 102, 255, 100),
- "doc_title": (255, 248, 220, 100), # Cornsilk
- # Light Yellow (from 'tables_caption_list')
- "table_title": (255, 255, 102, 100),
- # Sky Blue (from 'imgs_caption_list')
- "figure_title": (102, 178, 255, 100),
- "chart_title": (221, 160, 221, 100), # Plum
- "vision_footnote": (144, 238, 144, 100), # Light Green
- # Deep Purple (from 'texts_list')
- "text": (153, 0, 76, 100),
- # Bright Green (from 'interequations_list')
- "formula": (0, 255, 0, 100),
- "abstract": (255, 239, 213, 100), # Papaya Whip
- # Medium Green (from 'lists_list' and 'indexs_list')
- "content": (40, 169, 92, 100),
- # Neutral Gray (from 'dropped_bbox_list')
- "seal": (158, 158, 158, 100),
- # Olive Yellow (from 'tables_body_list')
- "table": (204, 204, 0, 100),
- # Bright Green (from 'imgs_body_list')
- "image": (153, 255, 51, 100),
- # Bright Green (from 'imgs_body_list')
- "figure": (153, 255, 51, 100),
- "chart": (216, 191, 216, 100), # Thistle
- # Pale Yellow-Green (from 'tables_footnote_list')
- "reference": (229, 255, 204, 100),
- "algorithm": (255, 250, 240, 100), # Floral White
- }
- default_color = (158, 158, 158, 100)
- return label_colors.get(label, default_color)
|