pipeline.py 2.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from typing import Any, Dict, Optional, Union, List
  15. import numpy as np
  16. from ...utils.pp_option import PaddlePredictorOption
  17. from ..base import BasePipeline
  18. # [TODO] 待更新models_new到models
  19. from ...models_new.video_classification.result import TopkVideoResult
  20. class VideoClassificationPipeline(BasePipeline):
  21. """Video Classification Pipeline"""
  22. entities = "video_classification"
  23. def __init__(
  24. self,
  25. config: Dict,
  26. device: str = None,
  27. pp_option: PaddlePredictorOption = None,
  28. use_hpip: bool = False,
  29. ) -> None:
  30. """
  31. Initializes the class with given configurations and options.
  32. Args:
  33. config (Dict): Configuration dictionary containing model and other parameters.
  34. device (str): The device to run the prediction on. Default is None.
  35. pp_option (PaddlePredictorOption): Options for PaddlePaddle predictor. Default is None.
  36. use_hpip (bool): Whether to use high-performance inference (hpip) for prediction. Defaults to False.
  37. """
  38. super().__init__(device=device, pp_option=pp_option, use_hpip=use_hpip)
  39. video_classification_model_config = config["SubModules"]["VideoClassification"]
  40. self.video_classification_model = self.create_model(
  41. video_classification_model_config
  42. )
  43. def predict(
  44. self,
  45. input: Union[str, List[str], np.ndarray, List[np.ndarray]],
  46. topk: Union[int, None] = 1,
  47. **kwargs
  48. ) -> TopkVideoResult:
  49. """Predicts video classification results for the given input.
  50. Args:
  51. input (Union[str, list[str], np.ndarray, list[np.ndarray]]): The input image(s) or path(s) to the images.
  52. topk: Union[int, None]: The number of top predictions to return. Defaults to 1.
  53. **kwargs: Additional keyword arguments that can be passed to the function.
  54. Returns:
  55. TopkVideoResult: The predicted top k results.
  56. """
  57. yield from self.video_classification_model(input, topk=topk)