PaddleX 支持统计模型推理耗时,需通过环境变量进行设置,具体如下:
PADDLE_PDX_INFER_BENCHMARK:设置为 True 时则开启 Benchmark,默认为 False;PADDLE_PDX_INFER_BENCHMARK_WARMUP:设置 warm up,在开始测试前,使用随机数据循环迭代 n 次,默认为 0;PADDLE_PDX_INFER_BENCHMARK_DATA_SIZE: 设置随机数据的尺寸,默认为 224;PADDLE_PDX_INFER_BENCHMARK_ITER:使用随机数据进行 Benchmark 测试的循环次数,仅当输入数据为 None 时,将使用随机数据进行测试;PADDLE_PDX_INFER_BENCHMARK_OUTPUT:用于设置保存本次 benchmark 指标到 txt 文件,如 ./benchmark.txt,默认为 None,表示不保存 Benchmark 指标;使用示例如下:
PADDLE_PDX_INFER_BENCHMARK=True \
PADDLE_PDX_INFER_BENCHMARK_WARMUP=5 \
PADDLE_PDX_INFER_BENCHMARK_DATA_SIZE=320 \
PADDLE_PDX_INFER_BENCHMARK_ITER=10 \
PADDLE_PDX_INFER_BENCHMARK_OUTPUT=./benchmark.txt \
python main.py \
-c ./paddlex/configs/object_detection/PicoDet-XS.yaml \
-o Global.mode=predict \
-o Predict.model_dir=None \
-o Predict.input=None
在开启 Benchmark 后,将自动打印 benchmark 指标:
+-------------------+-----------------+------+---------------+
| Stage | Total Time (ms) | Nums | Avg Time (ms) |
+-------------------+-----------------+------+---------------+
| ReadCmp | 49.95107651 | 10 | 4.99510765 |
| Resize | 8.48054886 | 10 | 0.84805489 |
| Normalize | 23.08964729 | 10 | 2.30896473 |
| ToCHWImage | 0.02717972 | 10 | 0.00271797 |
| ImageDetPredictor | 75.94108582 | 10 | 7.59410858 |
| DetPostProcess | 0.26535988 | 10 | 0.02653599 |
+-------------------+-----------------+------+---------------+
+-------------+-----------------+------+---------------+
| Stage | Total Time (ms) | Nums | Avg Time (ms) |
+-------------+-----------------+------+---------------+
| PreProcess | 81.54845238 | 10 | 8.15484524 |
| Inference | 75.94108582 | 10 | 7.59410858 |
| PostProcess | 0.26535988 | 10 | 0.02653599 |
| End2End | 161.07797623 | 10 | 16.10779762 |
| WarmUp | 5496.41847610 | 5 | 1099.28369522 |
+-------------+-----------------+------+---------------+
在 Benchmark 结果中,会统计该模型全部组件(Component)的总耗时(Total Time,单位为“毫秒”)、调用次数(Nums)、调用平均执行耗时(Avg Time,单位为“毫秒”),以及按预热(WarmUp)、预处理(PreProcess)、模型推理(Inference)、后处理(PostProcess)和端到端(End2End)进行划分的耗时统计,包括每个阶段的总耗时(Total Time,单位为“毫秒”)、样本数(Nums)和单样本平均执行耗时(Avg Time,单位为“毫秒”),同时,保存相关指标会到本地 ./benchmark.csv 文件中:
Stage,Total Time (ms),Nums,Avg Time (ms)
ReadCmp,0.04995107650756836,10,0.004995107650756836
Resize,0.008480548858642578,10,0.0008480548858642578
Normalize,0.02308964729309082,10,0.002308964729309082
ToCHWImage,2.7179718017578125e-05,10,2.7179718017578126e-06
ImageDetPredictor,0.07594108581542969,10,0.007594108581542969
DetPostProcess,0.00026535987854003906,10,2.6535987854003906e-05
PreProcess,0.08154845237731934,10,0.008154845237731934
Inference,0.07594108581542969,10,0.007594108581542969
PostProcess,0.00026535987854003906,10,2.6535987854003906e-05
End2End,0.16107797622680664,10,0.016107797622680664
WarmUp,5.496418476104736,5,1.0992836952209473