unet.py 2.6 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071
  1. # 环境变量配置,用于控制是否使用GPU
  2. # 说明文档:https://paddlex.readthedocs.io/zh_CN/develop/appendix/parameters.html#gpu
  3. import os
  4. os.environ['CUDA_VISIBLE_DEVICES'] = '2'
  5. import paddlex as pdx
  6. from paddlex.seg import transforms
  7. # 定义训练和验证时的transforms
  8. # API说明 https://paddlex.readthedocs.io/zh_CN/develop/apis/transforms/seg_transforms.html
  9. train_transforms = transforms.Compose([
  10. #transforms.ResizeStepScaling(
  11. # min_scale_factor=0.5,
  12. # max_scale_factor=2.,
  13. # scale_step_size=0.25),
  14. transforms.RandomPaddingCrop(
  15. crop_size=769, im_padding_value=[127.5] * 6),
  16. #transforms.ResizeByLong(long_size=512),
  17. #transforms.Padding(
  18. # target_size=512, im_padding_value=[127.5] * 6),
  19. transforms.RandomHorizontalFlip(),
  20. transforms.RandomVerticalFlip(),
  21. transforms.Normalize(
  22. mean=[0.5] * 6, std=[0.5] * 6, min_val=[0] * 6, max_val=[255] * 6)
  23. ])
  24. eval_transforms = transforms.Compose([
  25. transforms.Padding(
  26. target_size=1000, im_padding_value=[127.5] * 6), transforms.Normalize(
  27. mean=[0.5] * 6, std=[0.5] * 6, min_val=[0] * 6, max_val=[255] * 6)
  28. ])
  29. # 定义训练和验证所用的数据集
  30. # API说明:https://paddlex.readthedocs.io/zh_CN/develop/apis/datasets.html#paddlex-datasets-segdataset
  31. train_dataset = pdx.datasets.ChangeDetDataset(
  32. data_dir='dataset',
  33. file_list='dataset/train_list.txt',
  34. label_list='dataset/labels.txt',
  35. transforms=train_transforms,
  36. num_workers=4,
  37. shuffle=True)
  38. eval_dataset = pdx.datasets.ChangeDetDataset(
  39. data_dir='dataset',
  40. file_list='dataset/val_list.txt',
  41. label_list='dataset/labels.txt',
  42. num_workers=4,
  43. transforms=eval_transforms)
  44. # 初始化模型,并进行训练
  45. # 可使用VisualDL查看训练指标,参考https://paddlex.readthedocs.io/zh_CN/develop/train/visualdl.html
  46. num_classes = len(train_dataset.labels)
  47. # API说明:https://paddlex.readthedocs.io/zh_CN/develop/apis/models/semantic_segmentation.html#paddlex-seg-deeplabv3p
  48. model = pdx.seg.UNet(
  49. num_classes=num_classes,
  50. input_channel=6,
  51. use_bce_loss=True,
  52. use_dice_loss=True)
  53. # API说明:https://paddlex.readthedocs.io/zh_CN/develop/apis/models/semantic_segmentation.html#train
  54. # 各参数介绍与调整说明:https://paddlex.readthedocs.io/zh_CN/develop/appendix/parameters.html
  55. model.train(
  56. num_epochs=400,
  57. train_dataset=train_dataset,
  58. train_batch_size=4,
  59. eval_dataset=eval_dataset,
  60. learning_rate=0.01,
  61. save_interval_epochs=10,
  62. pretrain_weights='CITYSCAPES',
  63. save_dir='output/unet_3',
  64. use_vdl=True)