| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473 |
- // Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include "model_deploy/common/include/transforms.h"
- #include <math.h>
- #include <iostream>
- #include <string>
- #include <vector>
- namespace PaddleDeploy {
- bool Normalize::Run(cv::Mat *im) {
- std::vector<cv::Mat> split_im;
- cv::split(*im, split_im);
- for (int c = 0; c < im->channels(); c++) {
- split_im[c].convertTo(split_im[c], CV_32FC1, alpha_[c], beta_[c]);
- }
- cv::merge(split_im, *im);
- return true;
- }
- bool Normalize::ShapeInfer(
- const std::vector<int>& in_shape,
- std::vector<int>* out_shape) {
- out_shape->clear();
- out_shape->assign(in_shape.begin(), in_shape.end());
- return true;
- }
- double ResizeByShort::GenerateScale(const int origin_w, const int origin_h) {
- int im_size_max = std::max(origin_w, origin_h);
- int im_size_min = std::min(origin_w, origin_h);
- double scale =
- static_cast<double>(target_size_) / static_cast<double>(im_size_min);
- if (max_size_ > 0) {
- if (round(scale * im_size_max) > max_size_) {
- scale = static_cast<double>(max_size_) / static_cast<double>(im_size_max);
- }
- }
- return scale;
- }
- bool ResizeByShort::Run(cv::Mat *im) {
- int origin_w = im->cols;
- int origin_h = im->rows;
- double scale = GenerateScale(origin_w, origin_h);
- if (use_scale_) {
- cv::resize(*im, *im, cv::Size(), scale, scale, interp_);
- } else {
- int width = static_cast<int>(round(scale * im->cols));
- int height = static_cast<int>(round(scale * im->rows));
- cv::resize(*im, *im, cv::Size(width, height), 0, 0, interp_);
- }
- return true;
- }
- bool ResizeByShort::ShapeInfer(
- const std::vector<int>& in_shape,
- std::vector<int>* out_shape) {
- double scale = GenerateScale(in_shape[0], in_shape[1]);
- int width = static_cast<int>(round(scale * in_shape[0]));
- int height = static_cast<int>(round(scale * in_shape[1]));
- out_shape->clear();
- out_shape->push_back(width);
- out_shape->push_back(height);
- return true;
- }
- double ResizeByLong::GenerateScale(const int origin_w, const int origin_h) {
- int im_size_max = std::max(origin_w, origin_h);
- int im_size_min = std::min(origin_w, origin_h);
- double scale = 1.0f;
- if (target_size_ == -1) {
- if (im_size_max > max_size_) {
- scale = static_cast<double>(max_size_) /
- static_cast<double>(im_size_max);
- }
- } else {
- scale = static_cast<double>(target_size_) /
- static_cast<double>(im_size_max);
- }
- return scale;
- }
- bool ResizeByLong::Run(cv::Mat *im) {
- int origin_w = im->cols;
- int origin_h = im->rows;
- double scale = GenerateScale(origin_w, origin_h);
- int width = static_cast<int>(round(scale * im->cols));
- int height = static_cast<int>(round(scale * im->rows));
- if (stride_ != 0) {
- if (width / stride_ < 1 + 1e-5) {
- width = stride_;
- } else {
- width = (width / 32) * 32;
- }
- if (height / stride_ < 1 + 1e-5) {
- height = stride_;
- } else {
- height = (height / 32) * 32;
- }
- }
- cv::resize(*im, *im, cv::Size(width, height), 0, 0, interp_);
- return true;
- }
- bool ResizeByLong::ShapeInfer(
- const std::vector<int>& in_shape,
- std::vector<int>* out_shape) {
- double scale = GenerateScale(in_shape[0], in_shape[1]);
- int width = static_cast<int>(round(scale * in_shape[0]));
- int height = static_cast<int>(round(scale * in_shape[1]));
- if (stride_ != 0) {
- if (width / stride_ < 1 + 1e-5) {
- width = stride_;
- } else {
- width = (width / 32) * 32;
- }
- if (height / stride_ < 1 + 1e-5) {
- height = stride_;
- } else {
- height = (height / 32) * 32;
- }
- }
- out_shape->clear();
- out_shape->push_back(width);
- out_shape->push_back(height);
- return true;
- }
- bool Resize::Run(cv::Mat *im) {
- if (width_ <= 0 || height_ <= 0) {
- std::cerr << "[Resize] width and height should be greater than 0"
- << std::endl;
- return false;
- }
- double scale_w = width_ / static_cast<double>(im->cols);
- double scale_h = height_ / static_cast<double>(im->rows);
- if (keep_ratio_) {
- scale_h = std::min(scale_w, scale_h);
- scale_w = scale_h;
- width_ = static_cast<int>(round(scale_w * im->cols));
- height_ = static_cast<int>(round(scale_h * im->rows));
- }
- if (use_scale_) {
- cv::resize(*im, *im, cv::Size(), scale_w, scale_h, interp_);
- } else {
- cv::resize(*im, *im, cv::Size(width_, height_), 0, 0, interp_);
- }
- return true;
- }
- bool Resize::ShapeInfer(
- const std::vector<int>& in_shape,
- std::vector<int>* out_shape) {
- out_shape->clear();
- double width = width_;
- double height = height_;
- if (keep_ratio_) {
- int w = in_shape[0];
- int h = in_shape[1];
- double scale_w = width_ / static_cast<double>(w);
- double scale_h = height_ / static_cast<double>(h);
- scale_h = std::min(scale_w, scale_h);
- scale_w = scale_h;
- width = static_cast<int>(round(scale_w * w));
- height = static_cast<int>(round(scale_h * h));
- }
- out_shape->push_back(width);
- out_shape->push_back(height);
- return true;
- }
- bool CenterCrop::Run(cv::Mat *im) {
- int height = static_cast<int>(im->rows);
- int width = static_cast<int>(im->cols);
- if (height < height_ || width < width_) {
- std::cerr << "[CenterCrop] Image size less than crop size" << std::endl;
- return false;
- }
- int offset_x = static_cast<int>((width - width_) / 2);
- int offset_y = static_cast<int>((height - height_) / 2);
- cv::Rect crop_roi(offset_x, offset_y, width_, height_);
- *im = (*im)(crop_roi);
- return true;
- }
- bool CenterCrop::ShapeInfer(
- const std::vector<int>& in_shape,
- std::vector<int>* out_shape) {
- out_shape->clear();
- out_shape->push_back(width_);
- out_shape->push_back(height_);
- return true;
- }
- void Padding::GeneralPadding(cv::Mat *im,
- const std::vector<float> &padding_val,
- int padding_w, int padding_h) {
- cv::Scalar value;
- if (im->channels() == 1) {
- value = cv::Scalar(padding_val[0]);
- } else if (im->channels() == 2) {
- value = cv::Scalar(padding_val[0], padding_val[1]);
- } else if (im->channels() == 3) {
- value = cv::Scalar(padding_val[0], padding_val[1], padding_val[2]);
- } else if (im->channels() == 4) {
- value = cv::Scalar(padding_val[0], padding_val[1], padding_val[2],
- padding_val[3]);
- }
- cv::copyMakeBorder(
- *im,
- *im,
- 0,
- padding_h,
- 0,
- padding_w,
- cv::BORDER_CONSTANT,
- value);
- }
- void Padding::MultichannelPadding(cv::Mat *im,
- const std::vector<float> &padding_val,
- int padding_w, int padding_h) {
- std::vector<cv::Mat> padded_im_per_channel(im->channels());
- for (size_t i = 0; i < im->channels(); i++) {
- const cv::Mat per_channel = cv::Mat(im->rows + padding_h,
- im->cols + padding_w,
- CV_32FC1,
- cv::Scalar(padding_val[i]));
- padded_im_per_channel[i] = per_channel;
- }
- cv::Mat padded_im;
- cv::merge(padded_im_per_channel, padded_im);
- cv::Rect im_roi = cv::Rect(0, 0, im->cols, im->rows);
- im->copyTo(padded_im(im_roi));
- *im = padded_im;
- }
- bool Padding::Run(cv::Mat *im) {
- int padding_w = 0;
- int padding_h = 0;
- if (width_ > 1 & height_ > 1) {
- padding_w = width_ - im->cols;
- padding_h = height_ - im->rows;
- } else if (stride_ >= 1) {
- int h = im->rows;
- int w = im->cols;
- padding_h =
- ceil(h * 1.0 / stride_) * stride_ - im->rows;
- padding_w =
- ceil(w * 1.0 / stride_) * stride_ - im->cols;
- }
- if (padding_h < 0 || padding_w < 0) {
- std::cerr << "[Padding] Computed padding_h=" << padding_h
- << ", padding_w=" << padding_w
- << ", but they should be greater than 0." << std::endl;
- return false;
- }
- if (im->channels() < 5) {
- Padding::GeneralPadding(&*im, im_value_, padding_w, padding_h);
- } else {
- Padding::MultichannelPadding(
- &*im,
- im_value_,
- padding_w,
- padding_h);
- }
- return true;
- }
- bool Padding::Run(cv::Mat *im, int max_w, int max_h) {
- int padding_w = 0;
- int padding_h = 0;
- if ((max_w - im->cols) > 0 || (max_h - im->rows) > 0) {
- padding_w = max_w - im->cols;
- padding_h = max_h - im->rows;
- cv::Scalar value = cv::Scalar(0, 0, 0);
- cv::copyMakeBorder(
- *im,
- *im,
- 0,
- padding_h,
- 0,
- padding_w,
- cv::BORDER_CONSTANT,
- value);
- }
- return true;
- }
- bool Padding::ShapeInfer(
- const std::vector<int>& in_shape,
- std::vector<int>* out_shape) {
- int new_w = 0;
- int new_h = 0;
- if (width_ > 1 & height_ > 1) {
- new_w = width_;
- new_h = height_;
- } else {
- int w = in_shape[0];
- int h = in_shape[1];
- new_w = ceil(w * 1.0 / stride_) * stride_;
- new_h = ceil(h * 1.0 / stride_) * stride_;
- }
- assert(new_w >= in_shape[0] && new_h >= in_shape[1]);
- out_shape->clear();
- out_shape->push_back(new_w);
- out_shape->push_back(new_h);
- return true;
- }
- bool Clip::Run(cv::Mat *im) {
- std::vector<cv::Mat> split_im;
- cv::split(*im, split_im);
- for (int c = 0; c < im->channels(); c++) {
- cv::threshold(split_im[c], split_im[c], max_val_[c], max_val_[c],
- cv::THRESH_TRUNC);
- cv::subtract(cv::Scalar(0), split_im[c], split_im[c]);
- cv::threshold(split_im[c], split_im[c], min_val_[c], min_val_[c],
- cv::THRESH_TRUNC);
- cv::divide(split_im[c], cv::Scalar(-1), split_im[c]);
- }
- cv::merge(split_im, *im);
- return true;
- }
- bool Clip::ShapeInfer(
- const std::vector<int>& in_shape,
- std::vector<int>* out_shape) {
- out_shape->clear();
- out_shape->assign(in_shape.begin(), in_shape.end());
- return true;
- }
- bool BGR2RGB::Run(cv::Mat *im) {
- cv::cvtColor(*im, *im, cv::COLOR_BGR2RGB);
- return true;
- }
- bool BGR2RGB::ShapeInfer(
- const std::vector<int>& in_shape,
- std::vector<int>* out_shape) {
- out_shape->clear();
- out_shape->assign(in_shape.begin(), in_shape.end());
- return true;
- }
- bool RGB2BGR::Run(cv::Mat *im) {
- cv::cvtColor(*im, *im, cv::COLOR_RGB2BGR);
- return true;
- }
- bool RGB2BGR::ShapeInfer(
- const std::vector<int>& in_shape,
- std::vector<int>* out_shape) {
- out_shape->clear();
- out_shape->assign(in_shape.begin(), in_shape.end());
- return true;
- }
- bool Permute::Run(cv::Mat *im) {
- cv::Mat im_clone = (*im).clone();
- int rh = im_clone.rows;
- int rw = im_clone.cols;
- int rc = im_clone.channels();
- float *data = reinterpret_cast<float *>(im->data);
- for (int i = 0; i < rc; ++i) {
- cv::extractChannel(im_clone,
- cv::Mat(rh, rw, CV_32FC1, data + i * rh * rw), i);
- }
- return true;
- }
- bool Permute::ShapeInfer(
- const std::vector<int>& in_shape,
- std::vector<int>* out_shape) {
- out_shape->clear();
- out_shape->assign(in_shape.begin(), in_shape.end());
- return true;
- }
- bool Convert::Run(cv::Mat *im) {
- if (dtype_ == "float") {
- im->convertTo(*im, CV_32FC(im->channels()));
- }
- return true;
- }
- bool Convert::ShapeInfer(
- const std::vector<int>& in_shape,
- std::vector<int>* out_shape) {
- out_shape->clear();
- out_shape->assign(in_shape.begin(), in_shape.end());
- return true;
- }
- int OcrResize::GeneralWidth(int w, int h) {
- int resize_w;
- float ratio = static_cast<float>(w) / static_cast<float>(h);
- if (!fix_width_) {
- width_ = static_cast<int>(32 * ratio);
- }
- if (ceilf(height_ * ratio) > width_) {
- resize_w = width_;
- } else {
- resize_w = static_cast<int>(ceilf(height_ * ratio));
- }
- return resize_w;
- }
- bool OcrResize::Run(cv::Mat *im) {
- int resize_w = GeneralWidth(im->cols, im->rows);
- cv::resize(*im, *im, cv::Size(resize_w, height_), 0.f, 0.f, interp_);
- if (resize_w < width_ || is_pad_) {
- cv::copyMakeBorder(*im, *im, 0, 0, 0,
- static_cast<int>(width_ - resize_w),
- cv::BORDER_CONSTANT, value_);
- }
- return true;
- }
- bool OcrResize::ShapeInfer(
- const std::vector<int>& in_shape,
- std::vector<int>* out_shape) {
- int resize_w = GeneralWidth(in_shape[0], in_shape[1]);
- if (resize_w < width_ || is_pad_) {
- resize_w = width_;
- }
- out_shape->clear();
- out_shape->push_back(resize_w);
- out_shape->push_back(height_);
- return true;
- }
- bool OcrTrtResize::Run(cv::Mat *im) {
- int k = static_cast<int>(im->cols * 32 / im->rows);
- if (k >= width_) {
- cv::resize(*im, *im, cv::Size(width_, height_), 0.f, 0.f, interp_);
- } else {
- cv::resize(*im, *im, cv::Size(k, height_),
- 0.f, 0.f, cv::INTER_LINEAR);
- cv::copyMakeBorder(*im, *im, 0, 0, 0,
- static_cast<int>(width_ - k),
- cv::BORDER_CONSTANT, {127, 127, 127});
- }
- return true;
- }
- bool OcrTrtResize::ShapeInfer(
- const std::vector<int>& in_shape,
- std::vector<int>* out_shape) {
- out_shape->clear();
- out_shape->push_back(width_);
- out_shape->push_back(height_);
- return true;
- }
- } // namespace PaddleDeploy
|