pipeline.py 2.9 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from typing import Any, Dict, Optional
  15. import numpy as np
  16. from ...utils.pp_option import PaddlePredictorOption
  17. from ..base import BasePipeline
  18. # [TODO] 待更新models_new到models
  19. from ...models_new.object_detection.result import DetResult
  20. class ObjectDetectionPipeline(BasePipeline):
  21. """Object Detection Pipeline"""
  22. entities = "object_detection"
  23. def __init__(
  24. self,
  25. config: Dict,
  26. device: str = None,
  27. pp_option: PaddlePredictorOption = None,
  28. use_hpip: bool = False,
  29. hpi_params: Optional[Dict[str, Any]] = None,
  30. ) -> None:
  31. """
  32. Initializes the class with given configurations and options.
  33. Args:
  34. config (Dict): Configuration dictionary containing model and other parameters.
  35. device (str): The device to run the prediction on. Default is None.
  36. pp_option (PaddlePredictorOption): Options for PaddlePaddle predictor. Default is None.
  37. use_hpip (bool): Whether to use high-performance inference (hpip) for prediction. Defaults to False.
  38. hpi_params (Optional[Dict[str, Any]]): HPIP specific parameters. Default is None.
  39. """
  40. super().__init__(
  41. device=device, pp_option=pp_option, use_hpip=use_hpip, hpi_params=hpi_params
  42. )
  43. model_cfg = config["SubModules"]["ObjectDetection"]
  44. model_kwargs = {}
  45. if "threshold" in model_cfg:
  46. model_kwargs["threshold"] = model_cfg["threshold"]
  47. if "imgsz" in model_cfg:
  48. model_kwargs["imgsz"] = model_cfg["imgsz"]
  49. self.det_model = self.create_model(model_cfg, **model_kwargs)
  50. def predict(
  51. self,
  52. input: str | list[str] | np.ndarray | list[np.ndarray],
  53. threshold: Optional[float] = None,
  54. **kwargs,
  55. ) -> DetResult:
  56. """Predicts object detection results for the given input.
  57. Args:
  58. input (str | list[str] | np.ndarray | list[np.ndarray]): The input image(s) or path(s) to the images.
  59. threshold (Optional[float]): The threshold value to filter out low-confidence predictions. Default is None.
  60. **kwargs: Additional keyword arguments that can be passed to the function.
  61. Returns:
  62. DetResult: The predicted detection results.
  63. """
  64. yield from self.det_model(input, threshold=threshold, **kwargs)