train_detection.py 1.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960
  1. import os
  2. # 选择使用0号卡
  3. os.environ['CUDA_VISIBLE_DEVICES'] = '0'
  4. from paddlex.det import transforms
  5. import paddlex as pdx
  6. # 下载和解压表计检测数据集
  7. meter_det_dataset = 'https://bj.bcebos.com/paddlex/meterreader/datasets/meter_det.tar.gz'
  8. pdx.utils.download_and_decompress(meter_det_dataset, path='./')
  9. # 定义训练和验证时的transforms
  10. train_transforms = transforms.Compose([
  11. transforms.MixupImage(mixup_epoch=250),
  12. transforms.RandomDistort(),
  13. transforms.RandomExpand(),
  14. transforms.RandomCrop(),
  15. transforms.Resize(
  16. target_size=608, interp='RANDOM'),
  17. transforms.RandomHorizontalFlip(),
  18. transforms.Normalize(),
  19. ])
  20. eval_transforms = transforms.Compose([
  21. transforms.Resize(
  22. target_size=608, interp='CUBIC'),
  23. transforms.Normalize(),
  24. ])
  25. # 定义训练和验证所用的数据集
  26. train_dataset = pdx.datasets.CocoDetection(
  27. data_dir='meter_det/train/',
  28. ann_file='meter_det/annotations/instance_train.json',
  29. transforms=train_transforms,
  30. shuffle=True)
  31. eval_dataset = pdx.datasets.CocoDetection(
  32. data_dir='meter_det/test/',
  33. ann_file='meter_det/annotations/instance_test.json',
  34. transforms=eval_transforms)
  35. # 初始化模型,并进行训练
  36. # 可使用VisualDL查看训练指标
  37. # VisualDL启动方式: visualdl --logdir output/yolov3_darknet/vdl_log --port 8001
  38. # 浏览器打开 https://0.0.0.0:8001即可
  39. # 其中0.0.0.0为本机访问,如为远程服务, 改成相应机器IP
  40. # API说明: https://paddlex.readthedocs.io/zh_CN/latest/apis/models/detection.html#yolov3
  41. num_classes = len(train_dataset.labels)
  42. model = pdx.det.YOLOv3(
  43. num_classes=num_classes, backbone='DarkNet53', label_smooth=True)
  44. model.train(
  45. num_epochs=270,
  46. train_dataset=train_dataset,
  47. train_batch_size=8,
  48. eval_dataset=eval_dataset,
  49. learning_rate=0.001,
  50. warmup_steps=4000,
  51. lr_decay_epochs=[210, 240],
  52. save_dir='output/meter_det',
  53. use_vdl=True)