| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960 |
- import os
- # 选择使用0号卡
- os.environ['CUDA_VISIBLE_DEVICES'] = '0'
- from paddlex.det import transforms
- import paddlex as pdx
- # 下载和解压表计检测数据集
- meter_det_dataset = 'https://bj.bcebos.com/paddlex/meterreader/datasets/meter_det.tar.gz'
- pdx.utils.download_and_decompress(meter_det_dataset, path='./')
- # 定义训练和验证时的transforms
- train_transforms = transforms.Compose([
- transforms.MixupImage(mixup_epoch=250),
- transforms.RandomDistort(),
- transforms.RandomExpand(),
- transforms.RandomCrop(),
- transforms.Resize(
- target_size=608, interp='RANDOM'),
- transforms.RandomHorizontalFlip(),
- transforms.Normalize(),
- ])
- eval_transforms = transforms.Compose([
- transforms.Resize(
- target_size=608, interp='CUBIC'),
- transforms.Normalize(),
- ])
- # 定义训练和验证所用的数据集
- train_dataset = pdx.datasets.CocoDetection(
- data_dir='meter_det/train/',
- ann_file='meter_det/annotations/instance_train.json',
- transforms=train_transforms,
- shuffle=True)
- eval_dataset = pdx.datasets.CocoDetection(
- data_dir='meter_det/test/',
- ann_file='meter_det/annotations/instance_test.json',
- transforms=eval_transforms)
- # 初始化模型,并进行训练
- # 可使用VisualDL查看训练指标
- # VisualDL启动方式: visualdl --logdir output/yolov3_darknet/vdl_log --port 8001
- # 浏览器打开 https://0.0.0.0:8001即可
- # 其中0.0.0.0为本机访问,如为远程服务, 改成相应机器IP
- # API说明: https://paddlex.readthedocs.io/zh_CN/latest/apis/models/detection.html#yolov3
- num_classes = len(train_dataset.labels)
- model = pdx.det.YOLOv3(
- num_classes=num_classes, backbone='DarkNet53', label_smooth=True)
- model.train(
- num_epochs=270,
- train_dataset=train_dataset,
- train_batch_size=8,
- eval_dataset=eval_dataset,
- learning_rate=0.001,
- warmup_steps=4000,
- lr_decay_epochs=[210, 240],
- save_dir='output/meter_det',
- use_vdl=True)
|