| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from . import cv
- from .cv.models.utils.visualize import visualize_segmentation
- import paddlex.utils.logging as logging
- visualize = visualize_segmentation
- class UNet(cv.models.UNet):
- def __init__(self,
- num_classes=2,
- upsample_mode='bilinear',
- use_bce_loss=False,
- use_dice_loss=False,
- class_weight=None,
- ignore_index=None,
- input_channel=None):
- if num_classes > 2 and (use_bce_loss or use_dice_loss):
- raise ValueError(
- "dice loss and bce loss is only applicable to binary classification"
- )
- elif num_classes == 2:
- if use_bce_loss and use_dice_loss:
- use_mixed_loss = [('CrossEntropyLoss', 1), ('DiceLoss', 1)]
- elif use_bce_loss:
- use_mixed_loss = [('CrossEntropyLoss', 1)]
- elif use_dice_loss:
- use_mixed_loss = [('DiceLoss', 1)]
- else:
- use_mixed_loss = False
- else:
- use_mixed_loss = False
- if class_weight is not None:
- logging.warning(
- "`class_weight` is not supported in PaddleX 2.0 currently and is forcibly set to None."
- )
- if ignore_index is not None:
- logging.warning(
- "`ignore_index` is deprecated in PaddleX 2.0 and won't take effect. Defaults to 255."
- )
- if input_channel is not None:
- logging.warning(
- "`input_channel` is deprecated in PaddleX 2.0 and won't take effect. Defaults to 3."
- )
- if upsample_mode == 'bilinear':
- use_deconv = False
- else:
- use_deconv = True
- super(UNet, self).__init__(
- num_classes=num_classes,
- use_mixed_loss=use_mixed_loss,
- use_deconv=use_deconv)
- class DeepLabV3P(cv.models.DeepLabV3P):
- def __init__(self,
- num_classes=2,
- backbone='ResNet50_vd',
- output_stride=8,
- aspp_with_sep_conv=None,
- decoder_use_sep_conv=None,
- encoder_with_aspp=None,
- enable_decoder=None,
- use_bce_loss=False,
- use_dice_loss=False,
- class_weight=None,
- ignore_index=None,
- pooling_crop_size=None,
- input_channel=None):
- if num_classes > 2 and (use_bce_loss or use_dice_loss):
- raise ValueError(
- "dice loss and bce loss is only applicable to binary classification"
- )
- elif num_classes == 2:
- if use_bce_loss and use_dice_loss:
- use_mixed_loss = [('CrossEntropyLoss', 1), ('DiceLoss', 1)]
- elif use_bce_loss:
- use_mixed_loss = [('CrossEntropyLoss', 1)]
- elif use_dice_loss:
- use_mixed_loss = [('DiceLoss', 1)]
- else:
- use_mixed_loss = False
- else:
- use_mixed_loss = False
- if aspp_with_sep_conv is not None:
- logging.warning(
- "`aspp_with_sep_conv` is deprecated in PaddleX 2.0 and will not take effect. "
- "Defaults to True")
- if decoder_use_sep_conv is not None:
- logging.warning(
- "`decoder_use_sep_conv` is deprecated in PaddleX 2.0 and will not take effect. "
- "Defaults to True")
- if encoder_with_aspp is not None:
- logging.warning(
- "`encoder_with_aspp` is deprecated in PaddleX 2.0 and will not take effect. "
- "Defaults to True")
- if enable_decoder is not None:
- logging.warning(
- "`enable_decoder` is deprecated in PaddleX 2.0 and will not take effect. "
- "Defaults to True")
- if class_weight is not None:
- logging.warning(
- "`class_weight` is not supported in PaddleX 2.0 currently and is forcibly set to None."
- )
- if ignore_index is not None:
- logging.warning(
- "`ignore_index` is deprecated in PaddleX 2.0 and won't take effect. Defaults to 255."
- )
- if pooling_crop_size is not None:
- logging.warning(
- "Backbone 'MobileNetV3_large_x1_0_ssld' is currently not supported in PaddleX 2.0. "
- "`pooling_crop_size` will not take effect. Defaults to None")
- if input_channel is not None:
- logging.warning(
- "`input_channel` is deprecated in PaddleX 2.0 and won't take effect. Defaults to 3."
- )
- super(DeepLabV3P, self).__init__(
- num_classes=num_classes,
- backbone=backbone,
- use_mixed_loss=use_mixed_loss,
- output_stride=output_stride)
- class HRNet(cv.models.HRNet):
- def __init__(self,
- num_classes=2,
- width=18,
- use_bce_loss=False,
- use_dice_loss=False,
- class_weight=None,
- ignore_index=None,
- input_channel=None):
- if num_classes > 2 and (use_bce_loss or use_dice_loss):
- raise ValueError(
- "dice loss and bce loss is only applicable to binary classification"
- )
- elif num_classes == 2:
- if use_bce_loss and use_dice_loss:
- use_mixed_loss = [('CrossEntropyLoss', 1), ('DiceLoss', 1)]
- elif use_bce_loss:
- use_mixed_loss = [('CrossEntropyLoss', 1)]
- elif use_dice_loss:
- use_mixed_loss = [('DiceLoss', 1)]
- else:
- use_mixed_loss = False
- else:
- use_mixed_loss = False
- if class_weight is not None:
- logging.warning(
- "`class_weight` is not supported in PaddleX 2.0 currently and is forcibly set to None."
- )
- if ignore_index is not None:
- logging.warning(
- "`ignore_index` is deprecated in PaddleX 2.0 and won't take effect. Defaults to 255."
- )
- if input_channel is not None:
- logging.warning(
- "`input_channel` is deprecated in PaddleX 2.0 and won't take effect. Defaults to 3."
- )
- super(HRNet, self).__init__(
- num_classes=num_classes,
- width=width,
- use_mixed_loss=use_mixed_loss)
- class FastSCNN(cv.models.FastSCNN):
- def __init__(self,
- num_classes=2,
- use_bce_loss=False,
- use_dice_loss=False,
- class_weight=None,
- ignore_index=255,
- multi_loss_weight=None,
- input_channel=3):
- if num_classes > 2 and (use_bce_loss or use_dice_loss):
- raise ValueError(
- "dice loss and bce loss is only applicable to binary classification"
- )
- elif num_classes == 2:
- if use_bce_loss and use_dice_loss:
- use_mixed_loss = [('CrossEntropyLoss', 1), ('DiceLoss', 1)]
- elif use_bce_loss:
- use_mixed_loss = [('CrossEntropyLoss', 1)]
- elif use_dice_loss:
- use_mixed_loss = [('DiceLoss', 1)]
- else:
- use_mixed_loss = False
- else:
- use_mixed_loss = False
- if class_weight is not None:
- logging.warning(
- "`class_weight` is not supported in PaddleX 2.0 currently and is forcibly set to None."
- )
- if ignore_index is not None:
- logging.warning(
- "`ignore_index` is deprecated in PaddleX 2.0 and won't take effect. Defaults to 255."
- )
- if multi_loss_weight is not None:
- logging.warning(
- "`multi_loss_weight` is deprecated in PaddleX 2.0 and will not take effect. "
- "Defaults to [1.0, 0.4]")
- if input_channel is not None:
- logging.warning(
- "`input_channel` is deprecated in PaddleX 2.0 and won't take effect. Defaults to 3."
- )
- super(FastSCNN, self).__init__(
- num_classes=num_classes, use_mixed_loss=use_mixed_loss)
|