transforms.cpp 8.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252
  1. // Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // http://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. #include "include/paddlex/transforms.h"
  15. #include <math.h>
  16. #include <iostream>
  17. #include <string>
  18. #include <vector>
  19. namespace PaddleX {
  20. std::map<std::string, int> interpolations = {{"LINEAR", cv::INTER_LINEAR},
  21. {"NEAREST", cv::INTER_NEAREST},
  22. {"AREA", cv::INTER_AREA},
  23. {"CUBIC", cv::INTER_CUBIC},
  24. {"LANCZOS4", cv::INTER_LANCZOS4}};
  25. bool Normalize::Run(cv::Mat* im, ImageBlob* data) {
  26. for (int c = 0; c < im->channels(); c++) {
  27. float range_val = max_val_[c] - min_val_[c];
  28. for (int h = 0; h < im->rows; h++) {
  29. for (int w = 0; w < im->cols; w++) {
  30. im->at<cv::Vec3f>(h, w)[c] =
  31. ((im->at<cv::Vec3f>(h, w)[c] - min_val_[c]) / range_val -
  32. mean_[c]) / std_[c];
  33. }
  34. }
  35. }
  36. return true;
  37. }
  38. float ResizeByShort::GenerateScale(const cv::Mat& im) {
  39. int origin_w = im.cols;
  40. int origin_h = im.rows;
  41. int im_size_max = std::max(origin_w, origin_h);
  42. int im_size_min = std::min(origin_w, origin_h);
  43. float scale =
  44. static_cast<float>(short_size_) / static_cast<float>(im_size_min);
  45. if (max_size_ > 0) {
  46. if (round(scale * im_size_max) > max_size_) {
  47. scale = static_cast<float>(max_size_) / static_cast<float>(im_size_max);
  48. }
  49. }
  50. return scale;
  51. }
  52. bool ResizeByShort::Run(cv::Mat* im, ImageBlob* data) {
  53. data->im_size_before_resize_.push_back({im->rows, im->cols});
  54. data->reshape_order_.push_back("resize");
  55. float scale = GenerateScale(*im);
  56. int width = static_cast<int>(round(scale * im->cols));
  57. int height = static_cast<int>(round(scale * im->rows));
  58. cv::resize(*im, *im, cv::Size(width, height), 0, 0, cv::INTER_LINEAR);
  59. data->new_im_size_[0] = im->rows;
  60. data->new_im_size_[1] = im->cols;
  61. data->scale = scale;
  62. return true;
  63. }
  64. bool CenterCrop::Run(cv::Mat* im, ImageBlob* data) {
  65. int height = static_cast<int>(im->rows);
  66. int width = static_cast<int>(im->cols);
  67. if (height < height_ || width < width_) {
  68. std::cerr << "[CenterCrop] Image size less than crop size" << std::endl;
  69. return false;
  70. }
  71. int offset_x = static_cast<int>((width - width_) / 2);
  72. int offset_y = static_cast<int>((height - height_) / 2);
  73. cv::Rect crop_roi(offset_x, offset_y, width_, height_);
  74. *im = (*im)(crop_roi);
  75. data->new_im_size_[0] = im->rows;
  76. data->new_im_size_[1] = im->cols;
  77. return true;
  78. }
  79. bool Padding::Run(cv::Mat* im, ImageBlob* data) {
  80. data->im_size_before_resize_.push_back({im->rows, im->cols});
  81. data->reshape_order_.push_back("padding");
  82. int padding_w = 0;
  83. int padding_h = 0;
  84. if (width_ > 1 & height_ > 1) {
  85. padding_w = width_ - im->cols;
  86. padding_h = height_ - im->rows;
  87. } else if (coarsest_stride_ >= 1) {
  88. int h = im->rows;
  89. int w = im->cols;
  90. padding_h =
  91. ceil(h * 1.0 / coarsest_stride_) * coarsest_stride_ - im->rows;
  92. padding_w =
  93. ceil(w * 1.0 / coarsest_stride_) * coarsest_stride_ - im->cols;
  94. }
  95. if (padding_h < 0 || padding_w < 0) {
  96. std::cerr << "[Padding] Computed padding_h=" << padding_h
  97. << ", padding_w=" << padding_w
  98. << ", but they should be greater than 0." << std::endl;
  99. return false;
  100. }
  101. std::vector<cv::Mat> padded_im_per_channel;
  102. for (size_t i = 0; i < im->channels(); i++) {
  103. const cv::Mat per_channel = cv::Mat(im->size(), CV_32FC1, im_value_[i]);
  104. padded_im_per_channel.push_back(per_channel);
  105. }
  106. cv::Mat padded_im;
  107. cv::merge(padded_im_per_channel, padded_im);
  108. cv::Rect im_roi = cv::Rect(0, 0, im->cols, im->rows);
  109. im->copyTo(padded_im(im_roi));
  110. *im = padded_im;
  111. data->new_im_size_[0] = im->rows;
  112. data->new_im_size_[1] = im->cols;
  113. return true;
  114. }
  115. bool ResizeByLong::Run(cv::Mat* im, ImageBlob* data) {
  116. if (long_size_ <= 0) {
  117. std::cerr << "[ResizeByLong] long_size should be greater than 0"
  118. << std::endl;
  119. return false;
  120. }
  121. data->im_size_before_resize_.push_back({im->rows, im->cols});
  122. data->reshape_order_.push_back("resize");
  123. int origin_w = im->cols;
  124. int origin_h = im->rows;
  125. int im_size_max = std::max(origin_w, origin_h);
  126. float scale =
  127. static_cast<float>(long_size_) / static_cast<float>(im_size_max);
  128. cv::resize(*im, *im, cv::Size(), scale, scale, cv::INTER_NEAREST);
  129. data->new_im_size_[0] = im->rows;
  130. data->new_im_size_[1] = im->cols;
  131. data->scale = scale;
  132. return true;
  133. }
  134. bool Resize::Run(cv::Mat* im, ImageBlob* data) {
  135. if (width_ <= 0 || height_ <= 0) {
  136. std::cerr << "[Resize] width and height should be greater than 0"
  137. << std::endl;
  138. return false;
  139. }
  140. if (interpolations.count(interp_) <= 0) {
  141. std::cerr << "[Resize] Invalid interpolation method: '" << interp_ << "'"
  142. << std::endl;
  143. return false;
  144. }
  145. data->im_size_before_resize_.push_back({im->rows, im->cols});
  146. data->reshape_order_.push_back("resize");
  147. cv::resize(
  148. *im, *im, cv::Size(width_, height_), 0, 0, interpolations[interp_]);
  149. data->new_im_size_[0] = im->rows;
  150. data->new_im_size_[1] = im->cols;
  151. return true;
  152. }
  153. bool Clip::Run(cv::Mat* im, ImageBlob* data) {
  154. for (int h = 0; h < im->rows; h++) {
  155. for (int w = 0; w < im->cols; w++) {
  156. for (int c = 0; c < im->channels(); c++) {
  157. if (im->at<cv::Vec3f>(h, w)[c] < min_val_[c]) {
  158. im->at<cv::Vec3f>(h, w)[c] = min_val_[c];
  159. }
  160. if (im->at<cv::Vec3f>(h, w)[c] > max_val_[c]) {
  161. im->at<cv::Vec3f>(h, w)[c] = max_val_[c];
  162. }
  163. }
  164. }
  165. }
  166. return true;
  167. }
  168. void Transforms::Init(const YAML::Node& transforms_node, bool to_rgb) {
  169. transforms_.clear();
  170. to_rgb_ = to_rgb;
  171. for (const auto& item : transforms_node) {
  172. std::string name = item.begin()->first.as<std::string>();
  173. std::cout << "trans name: " << name << std::endl;
  174. std::shared_ptr<Transform> transform = CreateTransform(name);
  175. transform->Init(item.begin()->second);
  176. transforms_.push_back(transform);
  177. }
  178. }
  179. std::shared_ptr<Transform> Transforms::CreateTransform(
  180. const std::string& transform_name) {
  181. if (transform_name == "Normalize") {
  182. return std::make_shared<Normalize>();
  183. } else if (transform_name == "ResizeByShort") {
  184. return std::make_shared<ResizeByShort>();
  185. } else if (transform_name == "CenterCrop") {
  186. return std::make_shared<CenterCrop>();
  187. } else if (transform_name == "Resize") {
  188. return std::make_shared<Resize>();
  189. } else if (transform_name == "Padding") {
  190. return std::make_shared<Padding>();
  191. } else if (transform_name == "ResizeByLong") {
  192. return std::make_shared<ResizeByLong>();
  193. } else {
  194. std::cerr << "There's unexpected transform(name='" << transform_name
  195. << "')." << std::endl;
  196. exit(-1);
  197. }
  198. }
  199. bool Transforms::Run(cv::Mat* im, ImageBlob* data) {
  200. // do all preprocess ops by order
  201. if (to_rgb_) {
  202. cv::cvtColor(*im, *im, cv::COLOR_BGR2RGB);
  203. }
  204. (*im).convertTo(*im, CV_32FC3);
  205. data->ori_im_size_[0] = im->rows;
  206. data->ori_im_size_[1] = im->cols;
  207. data->new_im_size_[0] = im->rows;
  208. data->new_im_size_[1] = im->cols;
  209. for (int i = 0; i < transforms_.size(); ++i) {
  210. if (!transforms_[i]->Run(im, data)) {
  211. std::cerr << "Apply transforms to image failed!" << std::endl;
  212. return false;
  213. }
  214. }
  215. // data format NHWC to NCHW
  216. // img data save to ImageBlob
  217. int h = im->rows;
  218. int w = im->cols;
  219. int c = im->channels();
  220. (data->im_data_).resize(c * h * w);
  221. float* ptr = (data->im_data_).data();
  222. for (int i = 0; i < c; ++i) {
  223. cv::extractChannel(*im, cv::Mat(h, w, CV_32FC1, ptr + i * h * w), i);
  224. }
  225. return true;
  226. }
  227. } // namespace PaddleX