classifier.py 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442
  1. # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from __future__ import absolute_import
  15. import numpy as np
  16. import time
  17. import math
  18. import tqdm
  19. import paddle.fluid as fluid
  20. import paddlex.utils.logging as logging
  21. from paddlex.utils import seconds_to_hms
  22. import paddlex
  23. from collections import OrderedDict
  24. from .base import BaseAPI
  25. class BaseClassifier(BaseAPI):
  26. """构建分类器,并实现其训练、评估、预测和模型导出。
  27. Args:
  28. model_name (str): 分类器的模型名字,取值范围为['ResNet18',
  29. 'ResNet34', 'ResNet50', 'ResNet101',
  30. 'ResNet50_vd', 'ResNet101_vd', 'DarkNet53',
  31. 'MobileNetV1', 'MobileNetV2', 'Xception41',
  32. 'Xception65', 'Xception71']。默认为'ResNet50'。
  33. num_classes (int): 类别数。默认为1000。
  34. """
  35. def __init__(self, model_name='ResNet50', num_classes=1000):
  36. self.init_params = locals()
  37. super(BaseClassifier, self).__init__('classifier')
  38. if not hasattr(paddlex.cv.nets, str.lower(model_name)):
  39. raise Exception("ERROR: There's no model named {}.".format(
  40. model_name))
  41. self.model_name = model_name
  42. self.labels = None
  43. self.num_classes = num_classes
  44. self.fixed_input_shape = None
  45. def build_net(self, mode='train'):
  46. if self.__class__.__name__ == "AlexNet":
  47. assert self.fixed_input_shape is not None, "In AlexNet, input_shape should be defined, e.g. model = paddlex.cls.AlexNet(num_classes=1000, input_shape=[224, 224])"
  48. if self.fixed_input_shape is not None:
  49. input_shape = [
  50. None, 3, self.fixed_input_shape[1], self.fixed_input_shape[0]
  51. ]
  52. image = fluid.data(dtype='float32', shape=input_shape, name='image')
  53. else:
  54. image = fluid.data(
  55. dtype='float32', shape=[None, 3, None, None], name='image')
  56. if mode != 'test':
  57. label = fluid.data(dtype='int64', shape=[None, 1], name='label')
  58. model = getattr(paddlex.cv.nets, str.lower(self.model_name))
  59. net_out = model(image, num_classes=self.num_classes)
  60. softmax_out = fluid.layers.softmax(net_out, use_cudnn=False)
  61. inputs = OrderedDict([('image', image)])
  62. outputs = OrderedDict([('predict', softmax_out)])
  63. if mode == 'test':
  64. self.interpretation_feats = OrderedDict([('logits', net_out)])
  65. if mode != 'test':
  66. cost = fluid.layers.cross_entropy(input=softmax_out, label=label)
  67. avg_cost = fluid.layers.mean(cost)
  68. acc1 = fluid.layers.accuracy(input=softmax_out, label=label, k=1)
  69. k = min(5, self.num_classes)
  70. acck = fluid.layers.accuracy(input=softmax_out, label=label, k=k)
  71. if mode == 'train':
  72. self.optimizer.minimize(avg_cost)
  73. inputs = OrderedDict([('image', image), ('label', label)])
  74. outputs = OrderedDict([('loss', avg_cost), ('acc1', acc1),
  75. ('acc{}'.format(k), acck)])
  76. if mode == 'eval':
  77. del outputs['loss']
  78. return inputs, outputs
  79. def default_optimizer(self, learning_rate, warmup_steps, warmup_start_lr,
  80. lr_decay_epochs, lr_decay_gamma,
  81. num_steps_each_epoch):
  82. boundaries = [b * num_steps_each_epoch for b in lr_decay_epochs]
  83. values = [
  84. learning_rate * (lr_decay_gamma**i)
  85. for i in range(len(lr_decay_epochs) + 1)
  86. ]
  87. lr_decay = fluid.layers.piecewise_decay(
  88. boundaries=boundaries, values=values)
  89. if warmup_steps > 0:
  90. if warmup_steps > lr_decay_epochs[0] * num_steps_each_epoch:
  91. logging.error(
  92. "In function train(), parameters should satisfy: warmup_steps <= lr_decay_epochs[0]*num_samples_in_train_dataset",
  93. exit=False)
  94. logging.error(
  95. "See this doc for more information: https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/appendix/parameters.md#notice",
  96. exit=False)
  97. logging.error(
  98. "warmup_steps should less than {} or lr_decay_epochs[0] greater than {}, please modify 'lr_decay_epochs' or 'warmup_steps' in train function".
  99. format(lr_decay_epochs[0] * num_steps_each_epoch,
  100. warmup_steps // num_steps_each_epoch))
  101. lr_decay = fluid.layers.linear_lr_warmup(
  102. learning_rate=lr_decay,
  103. warmup_steps=warmup_steps,
  104. start_lr=warmup_start_lr,
  105. end_lr=learning_rate)
  106. optimizer = fluid.optimizer.Momentum(
  107. lr_decay,
  108. momentum=0.9,
  109. regularization=fluid.regularizer.L2Decay(1e-04))
  110. return optimizer
  111. def train(self,
  112. num_epochs,
  113. train_dataset,
  114. train_batch_size=64,
  115. eval_dataset=None,
  116. save_interval_epochs=1,
  117. log_interval_steps=2,
  118. save_dir='output',
  119. pretrain_weights='IMAGENET',
  120. optimizer=None,
  121. learning_rate=0.025,
  122. warmup_steps=0,
  123. warmup_start_lr=0.0,
  124. lr_decay_epochs=[30, 60, 90],
  125. lr_decay_gamma=0.1,
  126. use_vdl=False,
  127. sensitivities_file=None,
  128. eval_metric_loss=0.05,
  129. early_stop=False,
  130. early_stop_patience=5,
  131. resume_checkpoint=None):
  132. """训练。
  133. Args:
  134. num_epochs (int): 训练迭代轮数。
  135. train_dataset (paddlex.datasets): 训练数据读取器。
  136. train_batch_size (int): 训练数据batch大小。同时作为验证数据batch大小。默认值为64。
  137. eval_dataset (paddlex.datasets: 验证数据读取器。
  138. save_interval_epochs (int): 模型保存间隔(单位:迭代轮数)。默认为1。
  139. log_interval_steps (int): 训练日志输出间隔(单位:迭代步数)。默认为2。
  140. save_dir (str): 模型保存路径。
  141. pretrain_weights (str): 若指定为路径时,则加载路径下预训练模型;若为字符串'IMAGENET',
  142. 则自动下载在ImageNet图片数据上预训练的模型权重;若为None,则不使用预训练模型。默认为'IMAGENET'。
  143. optimizer (paddle.fluid.optimizer): 优化器。当该参数为None时,使用默认优化器:
  144. fluid.layers.piecewise_decay衰减策略,fluid.optimizer.Momentum优化方法。
  145. learning_rate (float): 默认优化器的初始学习率。默认为0.025。
  146. warmup_steps(int): 学习率从warmup_start_lr上升至设定的learning_rate,所需的步数,默认为0
  147. warmup_start_lr(float): 学习率在warmup阶段时的起始值,默认为0.0
  148. lr_decay_epochs (list): 默认优化器的学习率衰减轮数。默认为[30, 60, 90]。
  149. lr_decay_gamma (float): 默认优化器的学习率衰减率。默认为0.1。
  150. use_vdl (bool): 是否使用VisualDL进行可视化。默认值为False。
  151. sensitivities_file (str): 若指定为路径时,则加载路径下敏感度信息进行裁剪;若为字符串'DEFAULT',
  152. 则自动下载在ImageNet图片数据上获得的敏感度信息进行裁剪;若为None,则不进行裁剪。默认为None。
  153. eval_metric_loss (float): 可容忍的精度损失。默认为0.05。
  154. early_stop (bool): 是否使用提前终止训练策略。默认值为False。
  155. early_stop_patience (int): 当使用提前终止训练策略时,如果验证集精度在`early_stop_patience`个epoch内
  156. 连续下降或持平,则终止训练。默认值为5。
  157. resume_checkpoint (str): 恢复训练时指定上次训练保存的模型路径。若为None,则不会恢复训练。默认值为None。
  158. Raises:
  159. ValueError: 模型从inference model进行加载。
  160. """
  161. if not self.trainable:
  162. raise ValueError("Model is not trainable from load_model method.")
  163. self.labels = train_dataset.labels
  164. if optimizer is None:
  165. num_steps_each_epoch = train_dataset.num_samples // train_batch_size
  166. optimizer = self.default_optimizer(
  167. learning_rate=learning_rate,
  168. warmup_steps=warmup_steps,
  169. warmup_start_lr=warmup_start_lr,
  170. lr_decay_epochs=lr_decay_epochs,
  171. lr_decay_gamma=lr_decay_gamma,
  172. num_steps_each_epoch=num_steps_each_epoch)
  173. self.optimizer = optimizer
  174. # 构建训练、验证、预测网络
  175. self.build_program()
  176. # 初始化网络权重
  177. self.net_initialize(
  178. startup_prog=fluid.default_startup_program(),
  179. pretrain_weights=pretrain_weights,
  180. save_dir=save_dir,
  181. sensitivities_file=sensitivities_file,
  182. eval_metric_loss=eval_metric_loss,
  183. resume_checkpoint=resume_checkpoint)
  184. # 训练
  185. self.train_loop(
  186. num_epochs=num_epochs,
  187. train_dataset=train_dataset,
  188. train_batch_size=train_batch_size,
  189. eval_dataset=eval_dataset,
  190. save_interval_epochs=save_interval_epochs,
  191. log_interval_steps=log_interval_steps,
  192. save_dir=save_dir,
  193. use_vdl=use_vdl,
  194. early_stop=early_stop,
  195. early_stop_patience=early_stop_patience)
  196. def evaluate(self,
  197. eval_dataset,
  198. batch_size=1,
  199. epoch_id=None,
  200. return_details=False):
  201. """评估。
  202. Args:
  203. eval_dataset (paddlex.datasets): 验证数据读取器。
  204. batch_size (int): 验证数据批大小。默认为1。
  205. epoch_id (int): 当前评估模型所在的训练轮数。
  206. return_details (bool): 是否返回详细信息。
  207. Returns:
  208. dict: 当return_details为False时,返回dict, 包含关键字:'acc1'、'acc5',
  209. 分别表示最大值的accuracy、前5个最大值的accuracy。
  210. tuple (metrics, eval_details): 当return_details为True时,增加返回dict,
  211. 包含关键字:'true_labels'、'pred_scores',分别代表真实类别id、每个类别的预测得分。
  212. """
  213. self.arrange_transforms(transforms=eval_dataset.transforms, mode='eval')
  214. data_generator = eval_dataset.generator(
  215. batch_size=batch_size, drop_last=False)
  216. k = min(5, self.num_classes)
  217. total_steps = math.ceil(eval_dataset.num_samples * 1.0 / batch_size)
  218. true_labels = list()
  219. pred_scores = list()
  220. if not hasattr(self, 'parallel_test_prog'):
  221. with fluid.scope_guard(self.scope):
  222. self.parallel_test_prog = fluid.CompiledProgram(
  223. self.test_prog).with_data_parallel(
  224. share_vars_from=self.parallel_train_prog)
  225. batch_size_each_gpu = self._get_single_card_bs(batch_size)
  226. logging.info("Start to evaluating(total_samples={}, total_steps={})...".
  227. format(eval_dataset.num_samples, total_steps))
  228. for step, data in tqdm.tqdm(
  229. enumerate(data_generator()), total=total_steps):
  230. images = np.array([d[0] for d in data]).astype('float32')
  231. labels = [d[1] for d in data]
  232. num_samples = images.shape[0]
  233. if num_samples < batch_size:
  234. num_pad_samples = batch_size - num_samples
  235. pad_images = np.tile(images[0:1], (num_pad_samples, 1, 1, 1))
  236. images = np.concatenate([images, pad_images])
  237. with fluid.scope_guard(self.scope):
  238. outputs = self.exe.run(
  239. self.parallel_test_prog,
  240. feed={'image': images},
  241. fetch_list=list(self.test_outputs.values()))
  242. outputs = [outputs[0][:num_samples]]
  243. true_labels.extend(labels)
  244. pred_scores.extend(outputs[0].tolist())
  245. logging.debug("[EVAL] Epoch={}, Step={}/{}".format(epoch_id, step +
  246. 1, total_steps))
  247. pred_top1_label = np.argsort(pred_scores)[:, -1]
  248. pred_topk_label = np.argsort(pred_scores)[:, -k:]
  249. acc1 = sum(pred_top1_label == true_labels) / len(true_labels)
  250. acck = sum(
  251. [np.isin(x, y)
  252. for x, y in zip(true_labels, pred_topk_label)]) / len(true_labels)
  253. metrics = OrderedDict([('acc1', acc1), ('acc{}'.format(k), acck)])
  254. if return_details:
  255. eval_details = {
  256. 'true_labels': true_labels,
  257. 'pred_scores': pred_scores
  258. }
  259. return metrics, eval_details
  260. return metrics
  261. def predict(self, img_file, transforms=None, topk=1):
  262. """预测。
  263. Args:
  264. img_file (str): 预测图像路径。
  265. transforms (paddlex.cls.transforms): 数据预处理操作。
  266. topk (int): 预测时前k个最大值。
  267. Returns:
  268. list: 其中元素均为字典。字典的关键字为'category_id'、'category'、'score',
  269. 分别对应预测类别id、预测类别标签、预测得分。
  270. """
  271. if transforms is None and not hasattr(self, 'test_transforms'):
  272. raise Exception("transforms need to be defined, now is None.")
  273. true_topk = min(self.num_classes, topk)
  274. if transforms is not None:
  275. self.arrange_transforms(transforms=transforms, mode='test')
  276. im = transforms(img_file)
  277. else:
  278. self.arrange_transforms(
  279. transforms=self.test_transforms, mode='test')
  280. im = self.test_transforms(img_file)
  281. with fluid.scope_guard(self.scope):
  282. result = self.exe.run(self.test_prog,
  283. feed={'image': im},
  284. fetch_list=list(self.test_outputs.values()),
  285. use_program_cache=True)
  286. pred_label = np.argsort(result[0][0])[::-1][:true_topk]
  287. res = [{
  288. 'category_id': l,
  289. 'category': self.labels[l],
  290. 'score': result[0][0][l]
  291. } for l in pred_label]
  292. return res
  293. class ResNet18(BaseClassifier):
  294. def __init__(self, num_classes=1000):
  295. super(ResNet18, self).__init__(
  296. model_name='ResNet18', num_classes=num_classes)
  297. class ResNet34(BaseClassifier):
  298. def __init__(self, num_classes=1000):
  299. super(ResNet34, self).__init__(
  300. model_name='ResNet34', num_classes=num_classes)
  301. class ResNet50(BaseClassifier):
  302. def __init__(self, num_classes=1000):
  303. super(ResNet50, self).__init__(
  304. model_name='ResNet50', num_classes=num_classes)
  305. class ResNet101(BaseClassifier):
  306. def __init__(self, num_classes=1000):
  307. super(ResNet101, self).__init__(
  308. model_name='ResNet101', num_classes=num_classes)
  309. class ResNet50_vd(BaseClassifier):
  310. def __init__(self, num_classes=1000):
  311. super(ResNet50_vd, self).__init__(
  312. model_name='ResNet50_vd', num_classes=num_classes)
  313. class ResNet101_vd(BaseClassifier):
  314. def __init__(self, num_classes=1000):
  315. super(ResNet101_vd, self).__init__(
  316. model_name='ResNet101_vd', num_classes=num_classes)
  317. class ResNet50_vd_ssld(BaseClassifier):
  318. def __init__(self, num_classes=1000):
  319. super(ResNet50_vd_ssld, self).__init__(
  320. model_name='ResNet50_vd_ssld', num_classes=num_classes)
  321. class ResNet101_vd_ssld(BaseClassifier):
  322. def __init__(self, num_classes=1000):
  323. super(ResNet101_vd_ssld, self).__init__(
  324. model_name='ResNet101_vd_ssld', num_classes=num_classes)
  325. class DarkNet53(BaseClassifier):
  326. def __init__(self, num_classes=1000):
  327. super(DarkNet53, self).__init__(
  328. model_name='DarkNet53', num_classes=num_classes)
  329. class MobileNetV1(BaseClassifier):
  330. def __init__(self, num_classes=1000):
  331. super(MobileNetV1, self).__init__(
  332. model_name='MobileNetV1', num_classes=num_classes)
  333. class MobileNetV2(BaseClassifier):
  334. def __init__(self, num_classes=1000):
  335. super(MobileNetV2, self).__init__(
  336. model_name='MobileNetV2', num_classes=num_classes)
  337. class MobileNetV3_small(BaseClassifier):
  338. def __init__(self, num_classes=1000):
  339. super(MobileNetV3_small, self).__init__(
  340. model_name='MobileNetV3_small', num_classes=num_classes)
  341. class MobileNetV3_large(BaseClassifier):
  342. def __init__(self, num_classes=1000):
  343. super(MobileNetV3_large, self).__init__(
  344. model_name='MobileNetV3_large', num_classes=num_classes)
  345. class MobileNetV3_small_ssld(BaseClassifier):
  346. def __init__(self, num_classes=1000):
  347. super(MobileNetV3_small_ssld, self).__init__(
  348. model_name='MobileNetV3_small_ssld', num_classes=num_classes)
  349. class MobileNetV3_large_ssld(BaseClassifier):
  350. def __init__(self, num_classes=1000):
  351. super(MobileNetV3_large_ssld, self).__init__(
  352. model_name='MobileNetV3_large_ssld', num_classes=num_classes)
  353. class Xception65(BaseClassifier):
  354. def __init__(self, num_classes=1000):
  355. super(Xception65, self).__init__(
  356. model_name='Xception65', num_classes=num_classes)
  357. class Xception41(BaseClassifier):
  358. def __init__(self, num_classes=1000):
  359. super(Xception41, self).__init__(
  360. model_name='Xception41', num_classes=num_classes)
  361. class DenseNet121(BaseClassifier):
  362. def __init__(self, num_classes=1000):
  363. super(DenseNet121, self).__init__(
  364. model_name='DenseNet121', num_classes=num_classes)
  365. class DenseNet161(BaseClassifier):
  366. def __init__(self, num_classes=1000):
  367. super(DenseNet161, self).__init__(
  368. model_name='DenseNet161', num_classes=num_classes)
  369. class DenseNet201(BaseClassifier):
  370. def __init__(self, num_classes=1000):
  371. super(DenseNet201, self).__init__(
  372. model_name='DenseNet201', num_classes=num_classes)
  373. class ShuffleNetV2(BaseClassifier):
  374. def __init__(self, num_classes=1000):
  375. super(ShuffleNetV2, self).__init__(
  376. model_name='ShuffleNetV2', num_classes=num_classes)
  377. class HRNet_W18(BaseClassifier):
  378. def __init__(self, num_classes=1000):
  379. super(HRNet_W18, self).__init__(
  380. model_name='HRNet_W18', num_classes=num_classes)
  381. class AlexNet(BaseClassifier):
  382. def __init__(self, num_classes=1000, input_shape=None):
  383. super(AlexNet, self).__init__(
  384. model_name='AlexNet', num_classes=num_classes)
  385. self.fixed_input_shape = input_shape