| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354 |
- # 环境变量配置,用于控制是否使用GPU
- # 说明文档:https://paddlex.readthedocs.io/zh_CN/develop/appendix/parameters.html#gpu
- import os
- os.environ['CUDA_VISIBLE_DEVICES'] = '0'
- from paddlex.cls import transforms
- import paddlex as pdx
- # 下载和解压蔬菜分类数据集
- veg_dataset = 'https://bj.bcebos.com/paddlex/datasets/vegetables_cls.tar.gz'
- pdx.utils.download_and_decompress(veg_dataset, path='./')
- # 定义训练和验证时的transforms
- # API说明https://paddlex.readthedocs.io/zh_CN/develop/apis/transforms/cls_transforms.html
- train_transforms = transforms.Compose([
- transforms.RandomCrop(crop_size=224), transforms.RandomHorizontalFlip(),
- transforms.Normalize()
- ])
- eval_transforms = transforms.Compose([
- transforms.ResizeByShort(short_size=256),
- transforms.CenterCrop(crop_size=224), transforms.Normalize()
- ])
- # 定义训练和验证所用的数据集
- # API说明:https://paddlex.readthedocs.io/zh_CN/develop/apis/datasets.html#paddlex-datasets-imagenet
- train_dataset = pdx.datasets.ImageNet(
- data_dir='vegetables_cls',
- file_list='vegetables_cls/train_list.txt',
- label_list='vegetables_cls/labels.txt',
- transforms=train_transforms,
- shuffle=True)
- eval_dataset = pdx.datasets.ImageNet(
- data_dir='vegetables_cls',
- file_list='vegetables_cls/val_list.txt',
- label_list='vegetables_cls/labels.txt',
- transforms=eval_transforms)
- # 初始化模型,并进行训练
- # 可使用VisualDL查看训练指标,参考https://paddlex.readthedocs.io/zh_CN/develop/train/visualdl.html
- model = pdx.cls.AlexNet(num_classes=len(train_dataset.labels))
- # AlexNet需要指定确定的input_shape
- model.fixed_input_shape = [224, 224]
- # API说明:https://paddlex.readthedocs.io/zh_CN/develop/apis/models/classification.html#train
- # 各参数介绍与调整说明:https://paddlex.readthedocs.io/zh_CN/develop/appendix/parameters.html
- model.train(
- num_epochs=10,
- train_dataset=train_dataset,
- train_batch_size=32,
- eval_dataset=eval_dataset,
- lr_decay_epochs=[4, 6, 8],
- learning_rate=0.0025,
- save_dir='output/alexnet',
- use_vdl=True)
|